Spectral Properties of Two Classes of Averaging Operators on the Little Bloch Space and the Analytic Besov Spaces

被引:0
作者
E. Albrecht
T. L. Miller
机构
[1] Universität des Saarlandes,Fachrichtung 6.1
[2] Mississippi State University,Mathematik
来源
Complex Analysis and Operator Theory | 2014年 / 8卷
关键词
Averaging operators; Besov spaces; Bloch space; Functional calculus; Primary 47B38; Secondary 46E15; 47B40;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate spectral properties of operators of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} P_\mu f(z):=-\frac{1}{(1-z)^{\mu +1}}\int _1^z f(\zeta )(1-\zeta )^{\mu }\,d\zeta \end{aligned}$$\end{document}and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} Q_\mu f(z):=(1-z)^{\mu -1}\int _0^z f(\zeta )(1-\zeta )^{-\mu }\,d\zeta \quad (z\in \mathbb{D }) \end{aligned}$$\end{document}acting on the analytic Besov spaces \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_p$$\end{document} and the little Bloch space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal B _0$$\end{document}. For \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X=B_p$$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le p\le \infty $$\end{document}, or \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X=\mathcal B _0$$\end{document}, we identify the spectra of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_\mu $$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_\mu $$\end{document} in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{L }(X)$$\end{document}, as well as, in the case \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X\ne B_\infty $$\end{document}, the essential spectrum and index together with one sided analytic resolvents in the Fredholm regions of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_\mu $$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_\mu $$\end{document}.
引用
收藏
页码:129 / 157
页数:28
相关论文
共 24 条
[1]  
Albrecht E(1997)Analytic functional models and local spectral theory Proc. Lond. Math. Soc. 3 323-348
[2]  
Eschmeier J(2005)Spectral properties of generalized Cesàro operators on Hardy and weighted Bergman spaces Arch. Math. (Basel) 85 446-459
[3]  
Albrecht E(2001)An integral operator on Journal d’Analyse Mathématique 85 157-176
[4]  
Miller TL(2010) and Hardy’s inequality J. Funct. Anal. 258 67-98
[5]  
Neumann MM(1995)Resolvent estimates and decomposable extensions of generalized Cesàro operators Complex Var. Theory Appl. 28 149-158
[6]  
Aleman A(1997)An integral operator on Indiana Univ. Math. J. 46 337-356
[7]  
Cima JA(1985)Integration operators on Bergman spaces J. Reine Angew. Math. 363 110-145
[8]  
Aleman A.(2012)Möbius invariant function spaces J. Math. Anal. Appl. 394 656-669
[9]  
Persson A.-M.(1968)Spectral properties of Cesàro-like operators on weighted Bergman spaces Acta Sci. Math. (Szeged) 29 31-34
[10]  
Aleman A(2008)The spectrum of the Cesaro operator J. Math. Anal. Appl. 340 1180-1203