Levinson theorem for Dirac particles in one dimension

被引:0
|
作者
Qiong-gui Lin
机构
[1] China Center of Advanced Science and Technology (World Laboratory),
[2] P.O. Box 8730,undefined
[3] Beijing 100080,undefined
[4] P.R. China and Department of Physics,undefined
[5] Zhongshan University,undefined
[6] Guangzhou 510275,undefined
[7] P.R. China,undefined
关键词
PACS. 34.10.+x General theories and models of atomic and molecular collisions and interactions (including statistical theories, transition state, stochastic and trajectory models, etc.) - 03.65.-w Quantum mechanics - 11.80.-m Relativistic scattering theory;
D O I
暂无
中图分类号
学科分类号
摘要
The scattering of Dirac particles by symmetric potentials in one dimension is studied. A Levinson theorem is established. By this theorem, the number of bound states with even(odd)-parity, n+ (n-), is related to the phase shifts \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} [\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}] of scattering states with the same parity at zero momentum as follows: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}The theorem is verified by several simple examples.
引用
收藏
页码:515 / 524
页数:9
相关论文
共 50 条
  • [31] On a theorem of Levinson
    Ki, H
    JOURNAL OF NUMBER THEORY, 2004, 107 (02) : 287 - 297
  • [32] The Levinson theorem
    Ma, Zhong-Qi
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (48): : R625 - R659
  • [33] ON A THEOREM OF POLYA AND LEVINSON
    VIDRAS, A
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 183 (01) : 216 - 232
  • [34] Confinement limit of the Dirac particle in one dimension
    Toyama, F. M.
    Nogami, Y.
    PHYSICAL REVIEW A, 2010, 81 (04):
  • [35] Cosmological Levinson theorem
    Rosu, H
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1999, 114 (01): : 113 - 114
  • [36] On one extension of Dirac's theorem on Hamiltonicity
    Buyukcolak, Yasemin
    Gozupek, Didem
    Ozkan, Sibel
    Shalom, Mordechai
    DISCRETE APPLIED MATHEMATICS, 2019, 252 : 10 - 16
  • [37] May's theorem in one dimension
    Duggan, John
    JOURNAL OF THEORETICAL POLITICS, 2017, 29 (01) : 3 - 21
  • [38] Levinson theorem for the Dirac equation in D+1 dimensions -: art. no. 062715
    Gu, XY
    Ma, ZQ
    Dong, SH
    PHYSICAL REVIEW A, 2003, 67 (06): : 12
  • [39] EQUIVALENCE THEOREM FOR A MASSIVE SPIN ONE PARTICLE INTERACTING WITH DIRAC PARTICLES IN QUANTUM FIELD-THEORY
    JENKINS, JD
    JOURNAL OF PHYSICS PART A GENERAL, 1972, 5 (05): : 705 - &
  • [40] Dirac Equation and Optical Wave Propagation in One Dimension
    Gonzalez, Gabriel
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2018, 12 (02):