Levinson theorem for Dirac particles in one dimension

被引:0
|
作者
Qiong-gui Lin
机构
[1] China Center of Advanced Science and Technology (World Laboratory),
[2] P.O. Box 8730,undefined
[3] Beijing 100080,undefined
[4] P.R. China and Department of Physics,undefined
[5] Zhongshan University,undefined
[6] Guangzhou 510275,undefined
[7] P.R. China,undefined
关键词
PACS. 34.10.+x General theories and models of atomic and molecular collisions and interactions (including statistical theories, transition state, stochastic and trajectory models, etc.) - 03.65.-w Quantum mechanics - 11.80.-m Relativistic scattering theory;
D O I
暂无
中图分类号
学科分类号
摘要
The scattering of Dirac particles by symmetric potentials in one dimension is studied. A Levinson theorem is established. By this theorem, the number of bound states with even(odd)-parity, n+ (n-), is related to the phase shifts \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} [\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}] of scattering states with the same parity at zero momentum as follows: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}The theorem is verified by several simple examples.
引用
收藏
页码:515 / 524
页数:9
相关论文
共 50 条
  • [21] Levinson's theorem for the Dirac equation - Reply
    Poliatzky, N
    PHYSICAL REVIEW LETTERS, 1996, 76 (19) : 3655 - 3655
  • [22] Levinson's theorem for the Dirac equation - Comment
    Ma, ZQ
    PHYSICAL REVIEW LETTERS, 1996, 76 (19) : 3654 - 3654
  • [23] Scattering in one dimension: The coupled Schrodinger equation, threshold behaviour and Levinson's theorem
    Kiers, KA
    vanDijk, W
    JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (12) : 6033 - 6059
  • [24] Levinson theorem for the Dirac equation in D + 1 dimensions
    Gu, Xiao-Yan
    Ma, Zhong-Qi
    Dong, Shi-Hai
    Physical Review A - Atomic, Molecular, and Optical Physics, 2003, 67 (06): : 627151 - 627151
  • [25] LOW-ENERGY SCATTERING AND LEVINSON THEOREM FOR A ONE-DIMENSIONAL DIRAC-EQUATION
    CLEMENCE, DP
    INVERSE PROBLEMS, 1989, 5 (03) : 269 - 286
  • [26] Scattering of massless Dirac particles by oscillating barriers in one dimension
    Gonzalez-Santander, C.
    Dominguez-Adame, F.
    Fuentevilla, C. H.
    Diez, E.
    PHYSICS LETTERS A, 2014, 378 (13) : 927 - 930
  • [27] LEVINSON THEOREM AND THE 2ND VIRIAL-COEFFICIENT IN ONE-DIMENSION, 2-DIMENSION, AND 3-DIMENSION
    GIBSON, WG
    PHYSICAL REVIEW A, 1987, 36 (02): : 564 - 575
  • [28] Optical Analogues for Massless Dirac Particles and Conical Diffraction in One Dimension
    Zeuner, J. M.
    Efremidis, N. K.
    Keil, R.
    Dreisow, F.
    Christodoulides, D. N.
    Tuennermann, A.
    Nolte, S.
    Szameit, A.
    PHYSICAL REVIEW LETTERS, 2012, 109 (02)
  • [29] LEVINSON THEOREM AND TITCHMARSH-WEYL M(LAMBDA) THEORY FOR DIRAC SYSTEMS
    HINTON, DB
    KLAUS, M
    SHAW, JK
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1988, 109 : 173 - 186
  • [30] Levinson theorem for the Dirac equation in the presence of solitons in (1+1) dimensions
    Gousheh, SS
    PHYSICAL REVIEW A, 2002, 65 (03): : 9