Automatic pulmonary nodule detection on computed tomography images using novel deep learning

被引:0
|
作者
Shabnam Ghasemi
Shahin Akbarpour
Ali Farzan
Mohammad Ali Jabraeil Jamali
机构
[1] Islamic Azad University,Department of Computer Engineering, Shabestar Branch
来源
关键词
Computer-aided Detection; Computed Tomography Imaging; Deep Learning; Convolutional Neural Network; Region Proposals Network; Pulmonary Nodules Detected;
D O I
暂无
中图分类号
学科分类号
摘要
Lung cancer poses a significant threat, contributing significantly to cancer-related mortality. Computer-aided detection plays a pivotal role, particularly in the automated identification of pulmonary nodules, assisting radiologists in diagnosis. Despite the remarkable efficacy of deep convolutional neural networks in lesion identification, the detection of small nodules remains an enduring challenge. A conventional automated detection framework encompasses two critical stages: candidate detection and false positive reduction. This study introduces a novel approach named ReRointNet, focusing on meticulous lung nodule localization and detection through strategically placed sample points. To enhance nodule detection, we propose integrating PointNet anchors with RPN anchors. PointNet, operating on local key points, facilitates this integration. The synergy achieved by merging these anchors within our RePointNet framework enhances nodule detection rates and substantially improves localization accuracy. Post-detection, identified nodules undergo classification using the 3D Convolutional Neural Networks (CNN) method. Our contribution presents a novel paradigm for nodule detection in lung Computed Tomography (CT) images, with reduced computational costs and improved memory efficiency. The combined utilization of RePointNet and 3DCNN demonstrates proficiency in identifying nodules of various sizes, including small nodules. Our research underscores the superiority of lung nodule identification through the utilization of RePointNet based on point information, surpassing conventional networks. Rigorous evaluations of the LUNA16 dataset reveal our method's superior performance compared to state-of-the-art systems, achieving a notable sensitivity of 91.6 percent at a speed of 0.9 frames per second. These findings underscore the potential of our proposed approach in advancing precise lung nodule diagnosis, offering invaluable support to healthcare practitioners and radiologists engaged in diagnosing lung cancer patients.
引用
收藏
页码:55147 / 55173
页数:26
相关论文
共 50 条
  • [41] Deep-Learning-Based Automatic Segmentation of Parotid Gland on Computed Tomography Images
    Onder, Merve
    Evli, Cengiz
    Tuerk, Ezgi
    Kazan, Orhan
    Bayrakdar, Ibrahim Sevki
    Celik, Ozer
    Costa, Andre Luiz Ferreira
    Gomes, Joao Pedro Perez
    Ogawa, Celso Massahiro
    Jagtap, Rohan
    Orhan, Kaan
    DIAGNOSTICS, 2023, 13 (04)
  • [42] Automated Pulmonary Nodule Classification in Computed Tomography Images Using a Deep Convolutional Neural Network Trained by Generative Adversarial Networks
    Onishi, Yuya
    Teramoto, Atsushi
    Tsujimoto, Masakazu
    Tsukamoto, Tetsuya
    Saito, Kuniaki
    Toyama, Hiroshi
    Imaizumi, Kazuyoshi
    Fujita, Hiroshi
    BIOMED RESEARCH INTERNATIONAL, 2019, 2019
  • [43] Deep Learning for Automatic Real-Time Pulmonary Nodule Detection and Quantitative Analysis
    Liu, C.
    Hu, S.
    Yin, F.
    MEDICAL PHYSICS, 2019, 46 (06) : E444 - E444
  • [44] Using Deep Learning for Classification of Lung Nodules on Computed Tomography Images
    Song, QingZeng
    Zhao, Lei
    Luo, XingKe
    Dou, XueChen
    JOURNAL OF HEALTHCARE ENGINEERING, 2017, 2017
  • [45] Computed Tomography Image under Convolutional Neural Network Deep Learning Algorithm in Pulmonary Nodule Detection and Lung Function Examination
    Zhang, Chan
    Li, Jing
    Huang, Jian
    Wu, Shangjie
    JOURNAL OF HEALTHCARE ENGINEERING, 2021, 2021
  • [46] Automated Pulmonary Nodule Classification and Detection Using Deep Learning Architectures
    Ahmed, Imran
    Chehri, Abdellah
    Jeon, Gwanggil
    Piccialli, Francesco
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2023, 20 (04) : 2445 - 2456
  • [47] Deep Learning for Detection of Intracranial Aneurysms from Computed Tomography Angiography Images
    Liu, Xiujuan
    Mao, Jun
    Sun, Ning
    Yu, Xiangrong
    Chai, Lei
    Tian, Ye
    Wang, Jianming
    Liang, Jianchao
    Tao, Haiquan
    Yuan, Lihua
    Lu, Jiaming
    Wang, Yang
    Zhang, Bing
    Wu, Kaihua
    Wang, Yiding
    Chen, Mengjiao
    Wang, Zhishun
    Lu, Ligong
    JOURNAL OF DIGITAL IMAGING, 2023, 36 (01) : 114 - 123
  • [48] Deep Learning Approach for COVID-19 Detection in Computed Tomography Images
    Al Rahhal, Mohamad Mahmoud
    Bazi, Yakoub
    Jomaa, Rami M.
    Zuair, Mansour
    Al Ajlan, Naif
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 67 (02): : 2093 - 2110
  • [49] Automated Cerebral Infarct Detection on Computed Tomography Images Based on Deep Learning
    Peng, Syu-Jyun
    Chen, Yu-Wei
    Yang, Jing-Yu
    Wang, Kuo-Wei
    Tsai, Jang-Zern
    BIOMEDICINES, 2022, 10 (01)
  • [50] Automatic segmentation of multiple cardiovascular structures from cardiac computed tomography angiography images using deep learning
    Baskaran, Lohendran
    Al'Aref, Subhi J.
    Maliakal, Gabriel
    Lee, Benjamin C.
    Xu, Zhuoran
    Choi, Jeong W.
    Lee, Sang-Eun
    Sung, Ji Min
    Lin, Fay Y.
    Dunham, Simon
    Mosadegh, Bobak
    Kim, Yong-Jin
    Gottlieb, Ilan
    Lee, Byoung Kwon
    Chun, Eun Ju
    Cademartiri, Filippo
    Maffei, Erica
    Marques, Hugo
    Shin, Sanghoon
    Choi, Jung Hyun
    Chinnaiyan, Kavitha
    Hadamitzky, Martin
    Conte, Edoardo
    Andreini, Daniele
    Pontone, Gianluca
    Budoff, Matthew J.
    Leipsic, Jonathon A.
    Raff, Gilbert L.
    Virmani, Renu
    Samady, Habib
    Stone, Peter H.
    Berman, Daniel S.
    Narula, Jagat
    Bax, Jeroen J.
    Chang, Hyuk-Jae
    Min, James K.
    Shaw, Leslee J.
    PLOS ONE, 2020, 15 (05):