A note on invariable generation of nonsolvable permutation groups

被引:0
作者
Joachim König
Gicheol Shin
机构
[1] Korea National University of Education,Department of Mathematics Education
[2] Seowon University,Department of Mathematics Education
来源
Journal of Algebraic Combinatorics | 2021年 / 54卷
关键词
Combinatorics; Random permutations; Permutation groups; Solvable groups; Galois groups; Primary 05A05; 20B35; Secondary 11R32;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a result on the asymptotic proportion of randomly chosen pairs (σ,τ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\sigma ,\tau )$$\end{document} of permutations in the symmetric group Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_n$$\end{document} which “invariably” generate a nonsolvable subgroup, i.e., whose cycle structures cannot possibly both occur in the same solvable subgroup of Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_n$$\end{document}. As an application, we obtain that for a large degree “random” integer polynomial f, reduction modulo two different primes can be expected to suffice to prove the nonsolvability of Gal(f/Q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {Gal}(f/{\mathbb {Q}})$$\end{document}.
引用
收藏
页码:1247 / 1259
页数:12
相关论文
共 50 条
  • [41] EMBEDDING PERMUTATION GROUPS INTO WREATH PRODUCTS IN PRODUCT ACTION
    Praeger, Cheryl E.
    Schneider, Csaba
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2012, 92 (01) : 127 - 136
  • [42] ON REGULAR ORBITS OF ELEMENTS OF CLASSICAL GROUPS IN THEIR PERMUTATION REPRESENTATIONS
    Emmett, L.
    Zalesski, A. E.
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (09) : 3356 - 3409
  • [43] Identifying Cartesian decompositions preserved by transitive permutation groups
    Baddeley, RW
    Praeger, CE
    Schneider, C
    ALGEBRA COLLOQUIUM, 2004, 11 (01) : 1 - 10
  • [44] Splicing Systems over Permutation Groups of Length Two
    Hamzah, N. Z. A.
    Sebry, N. A. Mohd
    Fong, W. H.
    Sarmin, N. H.
    Turaev, S.
    MALAYSIAN JOURNAL OF FUNDAMENTAL AND APPLIED SCIENCES, 2012, 8 (02): : 83 - 88
  • [45] Finitary representations and images of transitive finitary permutation groups
    Leinen, F
    Puglisi, O
    JOURNAL OF ALGEBRA, 1999, 222 (02) : 524 - 549
  • [46] Permutation Groups and Set-Orbits on the Power Set
    Yan, Yanxiong
    Yang, Yong
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (01) : 177 - 199
  • [47] The occurrence of finite simple permutation groups of fixity 2 as automorphism groups of Riemann surfaces
    Salfeld, Patrick
    Waldecker, Rebecca
    JOURNAL OF ALGEBRA, 2020, 561 : 402 - 420
  • [48] Group of L-homeomorphisms and Lf -representability of Permutation Groups
    Sini, P.
    FUZZY INFORMATION AND ENGINEERING, 2020, 12 (01) : 97 - 108
  • [49] FINITE-DIMENSIONAL DIFFERENTIAL-ALGEBRAIC PERMUTATION GROUPS
    Freitag, James
    Jimenez, Leo
    Moosa, Rahim
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2025, 24 (02) : 603 - 626
  • [50] MULTIPLE TRANSITIVITY AND MIN-WISE INDEPENDENCE IN PERMUTATION GROUPS
    Franchi, C.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2004, 3 (04) : 427 - 435