A note on invariable generation of nonsolvable permutation groups

被引:0
作者
Joachim König
Gicheol Shin
机构
[1] Korea National University of Education,Department of Mathematics Education
[2] Seowon University,Department of Mathematics Education
来源
Journal of Algebraic Combinatorics | 2021年 / 54卷
关键词
Combinatorics; Random permutations; Permutation groups; Solvable groups; Galois groups; Primary 05A05; 20B35; Secondary 11R32;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a result on the asymptotic proportion of randomly chosen pairs (σ,τ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\sigma ,\tau )$$\end{document} of permutations in the symmetric group Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_n$$\end{document} which “invariably” generate a nonsolvable subgroup, i.e., whose cycle structures cannot possibly both occur in the same solvable subgroup of Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_n$$\end{document}. As an application, we obtain that for a large degree “random” integer polynomial f, reduction modulo two different primes can be expected to suffice to prove the nonsolvability of Gal(f/Q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {Gal}(f/{\mathbb {Q}})$$\end{document}.
引用
收藏
页码:1247 / 1259
页数:12
相关论文
共 50 条