A note on invariable generation of nonsolvable permutation groups

被引:0
|
作者
Joachim König
Gicheol Shin
机构
[1] Korea National University of Education,Department of Mathematics Education
[2] Seowon University,Department of Mathematics Education
来源
Journal of Algebraic Combinatorics | 2021年 / 54卷
关键词
Combinatorics; Random permutations; Permutation groups; Solvable groups; Galois groups; Primary 05A05; 20B35; Secondary 11R32;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a result on the asymptotic proportion of randomly chosen pairs (σ,τ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\sigma ,\tau )$$\end{document} of permutations in the symmetric group Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_n$$\end{document} which “invariably” generate a nonsolvable subgroup, i.e., whose cycle structures cannot possibly both occur in the same solvable subgroup of Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_n$$\end{document}. As an application, we obtain that for a large degree “random” integer polynomial f, reduction modulo two different primes can be expected to suffice to prove the nonsolvability of Gal(f/Q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {Gal}(f/{\mathbb {Q}})$$\end{document}.
引用
收藏
页码:1247 / 1259
页数:12
相关论文
共 50 条
  • [21] REGULAR PERMUTATION GROUPS AND CAYLEY GRAPHS
    Praeger, Cheryl E.
    EUROPEAN WOMEN IN MATHEMATICS, PROCEEDINGS, 2010, : 55 - 69
  • [22] On finite permutation groups with a transitive cyclic subgroup
    Li, Cai Heng
    Praeger, Cheryl E.
    JOURNAL OF ALGEBRA, 2012, 349 (01) : 117 - 127
  • [23] Rational permutation groups containing a full cycle
    Erkoc, Temha
    Yilmazturk, Utku
    MATHEMATICA SLOVACA, 2013, 63 (06) : 1227 - 1232
  • [24] Vector invariants of permutation groups in characteristic zero
    Reimers, Fabian
    Sezer, Mufit
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2024, 35 (03)
  • [25] Continuous cohomology of permutation groups on profinite modules
    Evans, DM
    Hewitt, PR
    COMMUNICATIONS IN ALGEBRA, 2006, 34 (04) : 1251 - 1264
  • [26] Cameron-Liebler sets in permutation groups
    D'haeseleer, Jozefien
    Meagher, Karen
    Pantangi, Venkata Raghu Tej
    ALGEBRAIC COMBINATORICS, 2024, 7 (04): : 1157 - 1182
  • [27] A classification of primitive permutation groups with finite stabilizers
    Smith, Simon M.
    JOURNAL OF ALGEBRA, 2015, 432 : 12 - 21
  • [28] Characters of finite permutation groups and Krein parameters
    Ito, Keiji
    JOURNAL OF ALGEBRA, 2018, 514 : 372 - 383
  • [29] Permutation groups, minimal degrees and quantum computing
    Kempe, Julia
    Pyber, Laszlo
    Shalev, Aner
    GROUPS GEOMETRY AND DYNAMICS, 2007, 1 (04) : 553 - 584
  • [30] Orbits of Sylow subgroups of finite permutation groups
    Bamberg, John
    Bors, Alexander
    Devillers, Alice
    Giudici, Michael
    Praeger, Cheryl E.
    Royle, Gordon F.
    JOURNAL OF ALGEBRA, 2022, 607 : 107 - 133