共 50 条
A note on invariable generation of nonsolvable permutation groups
被引:0
|作者:
Joachim König
Gicheol Shin
机构:
[1] Korea National University of Education,Department of Mathematics Education
[2] Seowon University,Department of Mathematics Education
来源:
Journal of Algebraic Combinatorics
|
2021年
/
54卷
关键词:
Combinatorics;
Random permutations;
Permutation groups;
Solvable groups;
Galois groups;
Primary 05A05;
20B35;
Secondary 11R32;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We prove a result on the asymptotic proportion of randomly chosen pairs (σ,τ)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(\sigma ,\tau )$$\end{document} of permutations in the symmetric group Sn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$S_n$$\end{document} which “invariably” generate a nonsolvable subgroup, i.e., whose cycle structures cannot possibly both occur in the same solvable subgroup of Sn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$S_n$$\end{document}. As an application, we obtain that for a large degree “random” integer polynomial f, reduction modulo two different primes can be expected to suffice to prove the nonsolvability of Gal(f/Q)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\text {Gal}(f/{\mathbb {Q}})$$\end{document}.
引用
收藏
页码:1247 / 1259
页数:12
相关论文