A note on invariable generation of nonsolvable permutation groups

被引:0
|
作者
Joachim König
Gicheol Shin
机构
[1] Korea National University of Education,Department of Mathematics Education
[2] Seowon University,Department of Mathematics Education
来源
Journal of Algebraic Combinatorics | 2021年 / 54卷
关键词
Combinatorics; Random permutations; Permutation groups; Solvable groups; Galois groups; Primary 05A05; 20B35; Secondary 11R32;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a result on the asymptotic proportion of randomly chosen pairs (σ,τ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\sigma ,\tau )$$\end{document} of permutations in the symmetric group Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_n$$\end{document} which “invariably” generate a nonsolvable subgroup, i.e., whose cycle structures cannot possibly both occur in the same solvable subgroup of Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_n$$\end{document}. As an application, we obtain that for a large degree “random” integer polynomial f, reduction modulo two different primes can be expected to suffice to prove the nonsolvability of Gal(f/Q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {Gal}(f/{\mathbb {Q}})$$\end{document}.
引用
收藏
页码:1247 / 1259
页数:12
相关论文
共 50 条
  • [1] A note on invariable generation of nonsolvable permutation groups
    Konig, Joachim
    Shin, Gicheol
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2021, 54 (04) : 1247 - 1259
  • [2] A note on permutation groups
    Knoerr, Reinhard
    COMMUNICATIONS IN ALGEBRA, 2007, 35 (02) : 613 - 616
  • [3] Minimal generation of transitive permutation groups
    Tracey, Gareth M.
    JOURNAL OF ALGEBRA, 2018, 509 : 40 - 100
  • [4] Minimal and random generation of permutation and matrix groups
    Holt, Derek F.
    Roney-Dougal, Colva M.
    JOURNAL OF ALGEBRA, 2013, 387 : 195 - 214
  • [5] Ewens Sampling and Invariable Generation
    Brito, Gerandy
    Fowler, Christopher
    Junge, Matthew
    Levy, Avi
    COMBINATORICS PROBABILITY & COMPUTING, 2018, 27 (06) : 853 - 891
  • [6] Nonsolvable Groups with no Prime Dividing Four Character Degrees
    Ghaffarzadeh, Mehdi
    Ghasemi, Mohsen
    Lewis, Mark L.
    Tong-Viet, Hung P.
    ALGEBRAS AND REPRESENTATION THEORY, 2017, 20 (03) : 547 - 567
  • [7] Nonsolvable groups satisfying the prime-power hypothesis
    Liu, Yanjun
    Song, Xueling
    Zhang, Jiping
    JOURNAL OF ALGEBRA, 2015, 442 : 455 - 483
  • [8] Finite nonsolvable groups whose character graphs have no triangles
    Li, Tianze
    Liu, Yanjun
    Song, Xueling
    JOURNAL OF ALGEBRA, 2010, 323 (08) : 2290 - 2300
  • [9] Permutation polytopes and indecomposable elements in permutation groups
    Guralnick, Robert M.
    Perkinson, David
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2006, 113 (07) : 1243 - 1256
  • [10] Generating permutation groups
    Lucchini, A
    Menegazzo, F
    Morigi, M
    COMMUNICATIONS IN ALGEBRA, 2004, 32 (05) : 1729 - 1746