Analysis of the percolation cluster structure

被引:0
|
作者
P. V. Moskalev
机构
[1] Voronezh State Agricultural University,
来源
Technical Physics | 2009年 / 54卷
关键词
61.43.Bn; 64.60.Ak;
D O I
暂无
中图分类号
学科分类号
摘要
An implementation of algorithms for constructing and analyzing the cluster structure for a square quadruply connected lattice in the uncorrelated percolation problem is considered. Subsets of the complete superior hull and the skeleton of a percolation cluster are singled out using a modification of the Hoshen—Kopelman relabeling algorithm and the Bellman principle of optimality. The critical nature of the percolation process is demonstrated using the method for statistical tests, and the behavior of mass dimension is analyzed for various subsets of a percolation cluster.
引用
收藏
页码:763 / 769
页数:6
相关论文
共 50 条
  • [31] A BLOCK CLUSTER APPROACH TO PERCOLATION
    PAYANDEH, B
    RIVISTA DEL NUOVO CIMENTO, 1980, 3 (03): : 1 - 33
  • [32] Largest cluster in subcritical, percolation
    Bazant, MZ
    PHYSICAL REVIEW E, 2000, 62 (02): : 1660 - 1669
  • [33] INVASION PERCOLATION INTO A PERCOLATING CLUSTER
    PAREDES, R
    OCTAVIO, M
    PHYSICAL REVIEW A, 1992, 46 (02): : 994 - 1001
  • [34] Fragmentation scaling of the percolation cluster
    Cheon, M
    Chang, I
    PROGRESS IN STATISTICAL PHYSICS, 1998, : 256 - 262
  • [35] Uniqueness of the Infinite Percolation Cluster
    Benjamini, Itai
    COARSE GEOMETRY AND RANDOMNESS: ECOLE D'ETE DE PROBABILITES DE SAINT-FLOUR XLI - 2011, 2013, 2100 : 69 - 84
  • [36] Fluctuations of cluster numbers in percolation
    Tiggemann, D
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2002, 13 (06): : 777 - 781
  • [37] The immiscible displacement in percolation cluster
    Tian, JP
    Yao, KL
    ACTA PHYSICA SINICA-OVERSEAS EDITION, 1998, 7 (10): : 732 - 738
  • [38] A REGULAR MODEL FOR CLUSTER NUMBERS AND STRUCTURE JUST BELOW PERCOLATION-THRESHOLD
    NAGATANI, T
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (04): : 961 - 970
  • [39] A LAYER-BY-LAYER STRUCTURE OF THE INFINITE CLUSTER WITH DIRECTED PERCOLATION IN A PLANE CRYSTAL
    KRIKUN, SV
    LYUBARSKY, GY
    UKRAINSKII FIZICHESKII ZHURNAL, 1992, 37 (02): : 285 - 290
  • [40] Two-dimensional percolation and cluster structure of the random packing of binary disks
    He, D
    Ekere, NN
    Cai, L
    PHYSICAL REVIEW E, 2002, 65 (06) : 1 - 061304