A graph convolution-based heterogeneous fusion network for multimodal sentiment analysis

被引:0
|
作者
Tong Zhao
Junjie Peng
Yansong Huang
Lan Wang
Huiran Zhang
Zesu Cai
机构
[1] Shanghai University,School of Computer Engineering and Science
[2] Shanghai University,Shanghai Institute for Advanced Communication and Data Science
[3] Harbin Institute of Technology,School of Computer Science and Technology
来源
Applied Intelligence | 2023年 / 53卷
关键词
Sentiment analysis; Heterogeneity; Graph convolution; Information fusion;
D O I
暂无
中图分类号
学科分类号
摘要
Multimodal sentiment analysis leverages various modalities, including text, audio, and video, to determine human sentiment tendencies, which holds significance in fields such as intention understanding and opinion analysis. However, there are two critical challenges in multimodal sentiment analysis: one is how to effectively extract and integrate information from various modalities, which is important for reducing the heterogeneity gap among modalities; the other is how to overcome the problem of information forgetting while modelling long sequences, which leads to significant information loss and adversely affect the fusion performance of modalities. Based on the above issues, this paper proposes a multimodal heterogeneity fusion network based on graph convolutional neural networks (HFNGC). A shared convolutional aggregation mechanism is used to overcome the semantic gap among modalities and reduce the noise effect caused by modality heterogeneity. In addition, the model applies Dynamic Routing to convert modality features into graph structures. By learning semantic information in the graph representation space, our model can improve the capability of remote-dependent learning. Furthermore, the model integrates complementary information among modalities and explores the intra- and inter-modal interactions during the modality fusion stage. To validate the effectiveness of our model, we conduct experiments on two benchmark datasets. The experimental results demonstrate that our method outperforms the existing methods, exhibiting strong generalisation capability and high competitiveness.
引用
收藏
页码:30455 / 30468
页数:13
相关论文
共 50 条
  • [31] Heterogeneous Graph Network Embedding for Sentiment Analysis on Social Media
    Zhigang Jin
    Xiaofang Zhao
    Yuhong Liu
    Cognitive Computation, 2021, 13 : 81 - 95
  • [32] Multimodal Sentiment Analysis Based on Composite Hierarchical Fusion
    Lei, Yu
    Qu, Keshuai
    Zhao, Yifan
    Han, Qing
    Wang, Xuguang
    COMPUTER JOURNAL, 2024, 67 (06): : 2230 - 2245
  • [33] Multimodal sentiment analysis based on fusion methods: A survey
    Zhu, Linan
    Zhu, Zhechao
    Zhang, Chenwei
    Xu, Yifei
    Kong, Xiangjie
    INFORMATION FUSION, 2023, 95 : 306 - 325
  • [34] BAFN: Bi-Direction Attention Based Fusion Network for Multimodal Sentiment Analysis
    Tang, Jiajia
    Liu, Dongjun
    Jin, Xuanyu
    Peng, Yong
    Zhao, Qibin
    Ding, Yu
    Kong, Wanzeng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (04) : 1966 - 1978
  • [35] Survey of Sentiment Analysis Algorithms Based on Multimodal Fusion
    Guo, Xu
    Mairidan, Wushouer
    Gulanbaier, Tuerhong
    Computer Engineering and Applications, 2024, 60 (02) : 1 - 18
  • [36] Fcdnet: Fuzzy Cognition-Based Dynamic Fusion Network for Multimodal Sentiment Analysis
    Liu, Shuai
    Luo, Zhe
    Fu, Weina
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2025, 33 (01) : 3 - 14
  • [37] TCHFN: Multimodal sentiment analysis based on Text-Centric Hierarchical Fusion Network
    Hou, Jingming
    Omar, Nazlia
    Tiun, Sabrina
    Saad, Saidah
    He, Qian
    KNOWLEDGE-BASED SYSTEMS, 2024, 300
  • [38] Dual-Perspective Fusion Network for Aspect-Based Multimodal Sentiment Analysis
    Wang, Di
    Tian, Changning
    Liang, Xiao
    Zhao, Lin
    He, Lihuo
    Wang, Quan
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 (4028-4038) : 4028 - 4038
  • [39] Heterogeneous Network Node Classification Method Based on Graph Convolution
    Xie X.
    Liang Y.
    Wang Z.
    Liu Z.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2022, 59 (07): : 1470 - 1485
  • [40] A POI Recommendation Algorithm Based on the Heterogeneous Graph Convolution Network
    Li, Yue
    SCIENTIFIC PROGRAMMING, 2022, 2022