We solve a conjecture raised by Kapovitch, Lytchak and Petrunin in [KLP21] by showing that the metric measure boundary is vanishing on any RCD(K,N)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\,\textrm{RCD}\,}}(K,N)$$\end{document} space (X,d,HN)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(X,{\textsf{d}},{\mathscr {H}}^N)$$\end{document} without boundary. Our result, combined with [KLP21], settles an open question about the existence of infinite geodesics on Alexandrov spaces without boundary raised by Perelman and Petrunin in 1996.