Ordering of c-cyclic graphs with respect to total irregularity

被引:0
作者
Ali Ghalavand
Ali Reza Ashrafi
机构
[1] University of Kashan,Department of Pure Mathematics, Faculty of Mathematical Science
来源
Journal of Applied Mathematics and Computing | 2020年 / 63卷
关键词
Cyclomatic number; Total irregularity; Connected graphs; Primary 05C76; Secondary 05C07;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a graph with vertex set V(G). The total irregularity of G is defined as irrt(G)=∑{u,v}⊆V(G)|degG(u)-degG(v)|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$irr_t(G)=\sum _{\{u,v\}\subseteq V(G)}|deg_G(u)-deg_G(v)|$$\end{document}, where degG(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$deg_G(v)$$\end{document} is the degree of the vertex v of G. The cyclomatic number of G is defined as c=m-n+k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c = m - n + k$$\end{document}, where m, n and k are the number of edges, vertices and components of G, respectively. In this paper, an ordering of connected graphs and connected chemical graphs with cyclomatic number c with respect to total irregularity are given.
引用
收藏
页码:707 / 715
页数:8
相关论文
共 23 条
  • [1] Abdo H(2014)The total irregularity of graphs under graph operations Miskolc Math. Notes 15 3-17
  • [2] Dimitrov D(2014)The total irregularity of a graph Discrete Math. Theor. Comput. Sci. 16 201-206
  • [3] Abdo H(2015)Nonregular graphs with minimal total irregularity Bull. Aust. Math. Soc. 92 1-10
  • [4] Brandt S(1997)The irregularity of a graph Ars Combin. 46 219-225
  • [5] Dimitrov D(2020)Note on non-regular graphs with minimal total irregularity Appl. Math. Comput. 369 124891-50
  • [6] Abdo H(2015)Comparing the irregularity and the total irregularity of graphs Ars Math. Contemp. 9 45-128
  • [7] Dimitrov D(2015)The maximal total irregularity of some connected graphs Iran. J. Math. Chem. 6 121-383
  • [8] Albertson MO(2018)Extremal graphs for the second multiplicative Zagreb index Bull. Int. Math. Virtual Inst. 8 369-273
  • [9] Ashrafi AR(2017)Graphs with smallest forgotten index Iran. J. Math. Chem. 8 259-1211
  • [10] Ghalavand A(2016)The minimal total irregularity of some classes of graphs Filomat 30 1203-undefined