Numerical approximation of eigenvalues and of Green's operator for an elliptic boundary value problem

被引:3
作者
Lanzara F. [1 ]
机构
[1] Dipartimento di Matematica, Università La Sapienza, 00185 Roma
关键词
Numerical Experiment; Green Function; Elliptic Equation; Dirichlet Problem; Numerical Approximation;
D O I
10.1007/s100920050009
中图分类号
学科分类号
摘要
This paper is concerned with the Dirichlet problem for a second order linear elliptic equation with bounded and measurable coefficients. By using the theory of intermediate operators methods for the calculus of the Green operator and of the corresponding Green function are given. Numerical experiments are included. © Springer-Verlag 1998.
引用
收藏
页码:63 / 92
页数:29
相关论文
共 18 条
  • [1] Aronszajn N., Rayleigh-Ritz and A. Weinstein methods for approximation of eigenvalues, Proc. Nat. Acad. Sci. USA, 34, pp. 474-480, (1948)
  • [2] Bazley N., Lower bounds for eigenvalues, J. Math. Mech., 10, pp. 289-307, (1961)
  • [3] Fichera G., Linear elliptic differential systems and eigenvalue problems, Lectures Notes in Math., 8, (1965)
  • [4] Fichera G., The Neumann eigenvalue problem, Appl. Anal., 3, pp. 213-240, (1973)
  • [5] Fichera G., Abstract and Numerical Aspects of Eigenvalue Theory, (1973)
  • [6] Fichera G., Numerical and Quantitative Analysis, (1978)
  • [7] Fichera G., De Vito L., Funzioni Analitiche di una Variabile Complessa, III Ediz., (1967)
  • [8] Fusciardi A., Sul calcolo degli autovalori di una membrana circolare fissa al bordo, Rend. Mat., 1, pp. 126-140, (1968)
  • [9] Kober H., Dictionary of Conformal Representations, (1952)
  • [10] Lanzara F., Teoria degli operatori intermedi e applicazioni: Risultati generali, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 3, pp. 79-101, (1992)