On a new class of inversive pseudorandom numbers for parallelized simulation methods

被引:0
作者
Harald Niederreiter
Arne Winterhof
机构
[1] Austrian Academy of Sciences,Institute of Discrete Mathematics
关键词
Simulation Method; Number Generation; Desirable Property; Attractive Alternative; Linear Method;
D O I
10.1023/A:1015296523748
中图分类号
学科分类号
摘要
Inversive methods are attractive alternatives to the linear method for pseudorandom number generation. A particularly attractive method is the digital explicit inversive method recently introduced by the authors. We establish some new results on the statistical properties of parallel streams of pseudorandom numbers generated by this method. In particular, we extend the results of the first author on the statistical properties of pseudorandom numbers generated by the explicit inversive congruential method introduced by Eichenauer-Herrmann. These results demonstrate that the new method is eminently suitable for the generation of parallel streams of pseudorandom numbers with desirable properties.
引用
收藏
页码:77 / 87
页数:10
相关论文
共 12 条
[1]  
Eichenauer-Herrmann J.(1993)Statistical independence of a new class of inversive congruential pseudorandom numbers Math. Comp. 60 375-384
[2]  
Hellekalek P.(1994)General discrepancy estimates: the Walsh function system Acta Arith. 67 209-218
[3]  
Moreno C. J.(1991)Exponential sums and Goppa codes: I Proc. Amer. Math. Soc. 111 523-531
[4]  
Moreno O.(1994)On a new class of pseudorandom numbers for simulation methods J. Comp. Appl. Math. 56 159-167
[5]  
Niederreiter H.(1996)Improved bounds in the multiple-recursive matrix method for pseudorandom number and vector generation Finite Fields Appl. 2 225-240
[6]  
Niederreiter H.(1999)On the distribution and lattice structure of nonlinear congruential pseudorandom numbers Finite Fields Appl. 5 246-253
[7]  
Niederreiter H.(2000)On the distribution of pseudorandom numbers and vectors generated by inversive methods Appl. Algebra Engrg. Comm. Comput. 10 189-202
[8]  
Shparlinski I. E.(2000)Incomplete exponential sums over finite fields and their applications to new inversive pseudorandom number generators Acta Arith. 93 387-399
[9]  
Niederreiter H.(undefined)undefined undefined undefined undefined-undefined
[10]  
Shparlinski I. E.(undefined)undefined undefined undefined undefined-undefined