Lower bound in the Bernstein inequality for the first derivative of algebraic polynomials

被引:0
|
作者
A. I. Podvysotskaya
机构
[1] Shevchenko Kiev National University,
来源
Ukrainian Mathematical Journal | 2009年 / 61卷
关键词
Approximation Theory; Extreme Problem; Classical Analysis; Chebyshev Polynomial; Integral Functional;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that max |p′(x)|, where p runs over the set of all algebraic polynomials of degree not higher than n ≥ 3 bounded in modulus by 1 on [−1, 1], is not lower than \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {{\left( {n - 1} \right)} \mathord{\left/{\vphantom {{\left( {n - 1} \right)} {\sqrt {1 - {x^2}} }}} \right.} {\sqrt {1 - {x^2}} }} $$\end{document} for all x ∈ (−1, 1) such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left| x \right| \in \bigcup\nolimits_{k = 0}^{\left[ {{n \mathord{\left/{\vphantom {n 2}} \right.} 2}} \right]} {\left[ {\cos \frac{{2k + 1}}{{2\left( {n - 1} \right)}}\pi, \cos \frac{{2k + 1}}{{2n}}\pi } \right]} $$\end{document}.
引用
收藏
页码:847 / 853
页数:6
相关论文
共 50 条