Weighted Composition Operators on Differentiable Lipschitz Algebras

被引:0
作者
S. Amiri
A. Golbaharan
H. Mahyar
机构
[1] Kharazmi University,Department of Mathematics, Faculty of Mathematical Sciences and Computer
来源
Bulletin of the Iranian Mathematical Society | 2018年 / 44卷
关键词
Differentiable Lipschitz functions; Weighted composition operators; Bloch- and Zygmund-type spaces; Compact and Riesz operators; Spectra; Primary 46J15; Secondary 47B38;
D O I
暂无
中图分类号
学科分类号
摘要
Let Lipn(X,α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {Lip}}^n(X, \alpha )$$\end{document} be the algebra of complex-valued functions on a perfect compact plane set X, whose derivatives up to order n exist and satisfy the Lipschitz condition of order 0<α≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\alpha \le 1$$\end{document}. We establish a necessary and sufficient condition for a weighted composition operator on Lipn(X,α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {Lip}}^n(X, \alpha )$$\end{document} to be compact. To obtain the necessary condition in the case 0<α<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\alpha < 1$$\end{document}, we provide a relation between these algebras and Zygmund-type spaces Znα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {Z}_n^\alpha $$\end{document}. We then conclude some interesting results about weighted composition operators on Znα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {Z}_n^\alpha $$\end{document} and determine the spectra of these operators when they are compact or Riesz.
引用
收藏
页码:955 / 968
页数:13
相关论文
共 22 条
[1]  
Amiri S(2016)Weighted composition operators on algebras of differentiable functions Bull. Belg. Math. Soc. Simon-Stevin 23 595-608
[2]  
Golbaharan A(2005)Compact endomorphisms of certain analytic Lipschitz algebras Bull. Belg. Math. Soc. Simon Stevin 12 301-312
[3]  
Mahyar H(1973)Quasianalytic Banach function algebras J. Funct. Anal. 13 28-50
[4]  
Behrouzi F(2005)Quasicompact and Riesz endomorphisms of Banach algebras J. Funct. Anal. 225 427-438
[5]  
Mahyar H(1999)Approximation in Lipschitz algebras of infinitely differentiable functions Bull. Korean Math. Soc. 36 629-636
[6]  
Dales HG(1997)Essential norms of weighted composition operators between Bloch-type spaces Proc. Am. Math. Soc. 125 3129-3130
[7]  
Davie AM(2003)Compact endomorphisms of infinitely differentiable Lipschitz algebras Rocky Mt. J. Math. 33 1437-1458
[8]  
Feinstein JF(2009)Compact composition operators on certain analytic Lipshitz spaces Rocky Mt. J. Math. 39 193-217
[9]  
Kamowitz H(2012)Compact and quasicompact homomorphisms between differentiable Lipschitz algebras Bull. Iran. Math. Soc. 38 85-99
[10]  
Honary TG(2010)Weighted composition operators between Bloch-type spaces Bull. Belg. Math. Soc. Simon Stevin 17 485-497