Some congruences for generalized harmonic numbers and binomial coefficients with roots of unity

被引:0
作者
Walid Kehila
机构
[1] Faculty of Mathematics,University of Science and Technology Houari Boumediene USTHB
[2] LATN Laboratory,undefined
来源
Indian Journal of Pure and Applied Mathematics | 2021年 / 52卷
关键词
Generalized harmonic numbers; Binomial coefficient; -adic numbers; Roots of unity;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we will establish a formula that relates the product ∏ωn=1ωx-1p-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\prod _{\omega ^n=1} {\omega x-1 \atopwithdelims ()p-1}$$\end{document} to generalized and homogeneous multiple harmonic sums, this would allow us to derive new identities and congruences. The congruences considered in this paper are congruences in Cp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}_p$$\end{document} which are also valid in Zp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_p$$\end{document} and Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}$$\end{document}. In order to prove these congruences, we employ well-known theorems for symmetric functions and harmonic numbers.
引用
收藏
页码:467 / 478
页数:11
相关论文
共 7 条
[1]  
Bayat M(1997)A generalization of Wolstenholme’s theorem Amer. Math. Monthly 104 557-560
[2]  
Hoffman ME(2017)Harmonic numbers summation identities, symmetric functions, and multiple zeta values Ramanujan J 42 501-526
[3]  
Rosen J(2013)Multiple harmonic sums and Wolstenholme’s theorem Int. J. Number Theory 9 2033-2052
[4]  
Tauraso R(2010)More congruences for central binomial coefficients J. Number Theory 130 2639-2649
[5]  
Xu C(2018)On harmonic numbers and nonlinear Euler sums Journal of Mathematical Analysis and Applications 466 1009-1042
[6]  
Cai Y(2008)Wolstenholme type theorem for multiple harmonic sum Int. J. Number Theory 4 73-106
[7]  
Zhao J(undefined)undefined undefined undefined undefined-undefined