Missing the point in noncommutative geometry

被引:0
|
作者
Nick Huggett
Fedele Lizzi
Tushar Menon
机构
[1] University of Illinois at Chicago,Department of Philosophy
[2] Università di Napoli Federico II,Dipartimento di Fisica “Ettore Pancini”
[3] INFN,Departament de Física Quàntica i Astrofìsica and Institut de Cìences del Cosmos (ICCUB)
[4] Sezione di Napoli,Faculty of Philosophy
[5] Universitat de Barcelona,undefined
[6] University of Cambridge,undefined
来源
Synthese | 2021年 / 199卷
关键词
Noncommutative geometry; Emergent spacetime; Quantum field theory;
D O I
暂无
中图分类号
学科分类号
摘要
Noncommutative geometries generalize standard smooth geometries, parametrizing the noncommutativity of dimensions with a fundamental quantity with the dimensions of area. The question arises then of whether the concept of a region smaller than the scale—and ultimately the concept of a point—makes sense in such a theory. We argue that it does not, in two interrelated ways. In the context of Connes’ spectral triple approach, we show that arbitrarily small regions are not definable in the formal sense. While in the scalar field Moyal–Weyl approach, we show that they cannot be given an operational definition. We conclude that points do not exist in such geometries. We therefore investigate (a) the metaphysics of such a geometry, and (b) how the appearance of smooth manifold might be recovered as an approximation to a fundamental noncommutative geometry.
引用
收藏
页码:4695 / 4728
页数:33
相关论文
共 50 条
  • [1] Missing the point in noncommutative geometry
    Huggett, Nick
    Lizzi, Fedele
    Menon, Tushar
    SYNTHESE, 2021, 199 (1-2) : 4695 - 4728
  • [2] The Geometry of Noncommutative Spacetimes
    Eckstein, Michal
    UNIVERSE, 2017, 3 (01)
  • [3] Noncommutative geometry and arithmetics
    Almeida, P.
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2009, 16 (03) : 350 - 362
  • [4] Noncommutative geometry of foliations
    Kordyukov, Yuri A.
    JOURNAL OF K-THEORY, 2008, 2 (02) : 219 - 327
  • [5] Noncommutative geometry and arithmetics
    P. Almeida
    Russian Journal of Mathematical Physics, 2009, 16 : 350 - 362
  • [6] Zitterbewegung in noncommutative geometry
    Abyaneh, Mehran Zahiri
    Farhoudi, Mehrdad
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2019, 34 (09):
  • [7] Supersymmetry and noncommutative geometry
    Kalau, W
    Walze, M
    JOURNAL OF GEOMETRY AND PHYSICS, 1997, 22 (01) : 77 - 102
  • [8] Stratified Noncommutative Geometry
    Ayala, David
    Mazel-Gee, Aaron
    Rozenblyum, Nick
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 297 (1485) : 1485
  • [9] Modified Dispersion Relations and Noncommutative Geometry lead to a finite Zero Point Energy
    Garattini, Remo
    FRONTIERS OF FUNDAMENTAL PHYSICS, 2012, 1446 : 298 - 310
  • [10] Spectral Noncommutative Geometry Standard Model and all that
    Devastato, Agostino
    Kurkov, Maxim
    Lizzi, Fedele
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2019, 34 (19):