Controllability for a One-Dimensional Wave Equation in a Non-cylindrical Domain

被引:0
作者
Isaías Pereira de Jesus
机构
[1] Universidade Federal do Piauí,Departamento de Matemática
来源
Mediterranean Journal of Mathematics | 2019年 / 16卷
关键词
Wave equation; hierarchic control; Stackelberg–Nash strategy; controllability; 35Q10; 35B37; 35B40;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with the controllability for a one-dimensional wave equation with mixed boundary conditions in a non-cylindrical domain. This equation models small vibrations of a string where an endpoint is fixed and the other is moving. As usual, we consider one main control (the leader) and an additional secondary control (the follower). We use Stackelberg–Nash strategies.
引用
收藏
相关论文
共 31 条
[1]  
Lions J-L(1994)Hierarchic control Math. Sci. Proc. Indian Acad. Sci. 104 295-304
[2]  
González G(2013)On the approximate controllability of Stackelberg–Nash strategies for Stokes equations Proc. Am. Math. Soc. 141 1759-1773
[3]  
Lopes F(2017)New results on the Stackelberg–Nash exact control of linear parabolic equations Syst. Control Lett. 104 78-85
[4]  
Rojas-Medar M(2015)Stackelberg-Nash exact controllability for linear and semilinear parabolic equations ESAIM Control Optim. Calc. Variat. 21 835-856
[5]  
Araruna F(2018)Hierarchic control for the wave equation J. Optim. Theory Appl. 178 264-288
[6]  
Fernández-Cara E(2018)Observability of the 1-D wave equation with mixed boundary conditions in a non-cylindrical domain Mediterr. J. Math. 15 62-457
[7]  
Guerrero S(2015)Exact controllability for a one-dimensional wave equation with the fixed endpoint control Bound. Value Probl. 9 435-625
[8]  
Santos M(2014)Exact controllability for a wave equation with fixed boundary control Bound. Value Probl. 402 612-5188
[9]  
Araruna F(1996)Exact controlllability for the wave equation in domains with variable boundary Rev. Mat. Univ. Complut. Madr. 263 5175-341
[10]  
Fernández-Cara E(2013)Exact controllability for a one-dimensional wave equation in non-cylindrical domains J. Math. Anal. Appl. 11 317-12