Nonexistence of multiple black holes in static space-times and weakly harmonic curvature

被引:0
作者
Seungsu Hwang
Jeongwook Chang
Gabjin Yun
机构
[1] Chung-Ang University,Department of Mathematics
[2] Dankook Univeristy,Department of Mathematics Education
[3] Myong Ji University,Department of Mathematics
来源
General Relativity and Gravitation | 2016年 / 48卷
关键词
Black hole; Einstein equation; Harmonic curvature; Static vacuum space-time; 53C25; 83C57; 83C05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove that there are no multiple black holes in an n-dimensional static vacuum space-time having weakly harmonic curvature unless the Ricci curvature is trivial.
引用
收藏
相关论文
共 18 条
[1]  
Anderson MT(1999)Scalar curvature, metric degenerations and the static vacuum Einstein equations on 3-manifolds I Geom. Funct. Anal. 9 855-967
[2]  
Anderson MT(2000)On the structure of solutions to the static vacuum Einstein equations Ann. Henri Poincaré 1 995-1042
[3]  
Bunting GL(1987)Non-existence of multiple black holes in asymptotically Euclidean static vacuum space-times Gen. Rel. Grav. 19 147-154
[4]  
Masood-ul-Alam AKM(2003)Existence of metrics with harmonic curvature and non parallel Ricci curvature Balk. J. Geom. Appl. 8 21-30
[5]  
Chouikha AR(1982)On compact Riemannian manifolds with harmonic curvature Math. Ann. 259 145-152
[6]  
Derdzinski A(1988)Riemannian metrics with harmonic curvature on 2-sphere bundles over compact surfaces Bull. Soc. Math. Fr. 116 133-156
[7]  
Derdzinski A(2002)Generalized weyl solutions Phys. Rev. D (3) 65 854025-280
[8]  
Emparan R(2002)Uniqueness and non-uniqueness of static blask holes in higher dimenisons Phys. Rev. Lett. 89 041101-1779
[9]  
Reall HS(1978)Einstein-like manifolds which are not Einstein Geom. Dedicata 7 259-906
[10]  
Gibbons GW(1967)Event horizons in static vacuum space-time Phys. Rev. 164 1776-1458