The influence of negatively charged heavy ions on the kinetic Alfven wave in a cometary environment

被引:0
作者
Venugopal Chandu
E. Savithri Devi
R. Jayapal
George Samuel
S. Antony
G. Renuka
机构
[1] Mahatma Gandhi University,School of Pure & Applied Physics
[2] University of Kerala,Department of Physics
来源
Astrophysics and Space Science | 2012年 / 339卷
关键词
Kinetic Alfven wave; Stability; Multi-ion; Negative-ion cometary plasma;
D O I
暂无
中图分类号
学科分类号
摘要
Kinetic Alfven waves are important in a wide variety of areas like astrophysical, space and laboratory plasmas. In cometary environments, waves in the hydromagnetic range of frequencies are excited predominantly by heavy ions. We, therefore, study the stability of the kinetic Alfven wave in a plasma of hydrogen ions, positively and negatively charged oxygen ions and electrons. Each species was modeled by drifting ring distributions in the direction parallel to the magnetic field; in the perpendicular direction the distribution was simulated with a loss cone type distribution obtained through the subtraction of two Maxwellian distributions with different temperatures. We find that for frequencies \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\omega^{*} < \omega_{c\mathrm{H}^{ +}}$\end{document} (ω∗ and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\omega_{c\mathrm{H}^{ +}}$\end{document} being respectively the Doppler shifted and hydrogen ion gyro-frequencies), the growth rate increases with increasing negatively charged oxygen ion densities while decreasing with increasing propagation angles, negative ion temperatures and negative ion mass.
引用
收藏
页码:157 / 164
页数:7
相关论文
共 134 条
[1]  
Anderson R.R.(1982)undefined J. Geophys. Res. 87 2082-undefined
[2]  
Harvey C.C.(1987)undefined Astron. Astrophys. 187 311-undefined
[3]  
Hoppe M.M.(1989)undefined J. Geophys. Res. 94 3-undefined
[4]  
Tsurutani B.T.(1998)undefined J. Geophys. Res. 103 2055-undefined
[5]  
Eastman T.E.(1991)undefined Nature 349 343-undefined
[6]  
Etcheto J.J.(2005)undefined J. Geophys. Res. 110 9131-undefined
[7]  
Brinca A.L.(1989)undefined J. Geophys. Res. 94 3691-undefined
[8]  
Tsurutani B.T.(1985)undefined Phys. Fluids 28 267-undefined
[9]  
Brinca A.L.(1986)undefined Geophys. Res. Lett. 13 370-undefined
[10]  
Tsurutani B.T.(1975)undefined Phys. Rev. Lett. 35 4471-undefined