On Quasinormal Modes of Asymptotically Anti-de Sitter Black Holes

被引:0
作者
Claude M. Warnick
机构
[1] 4-181 CCIS,Department of Physics
[2] University of Alberta,Mathematics Institute, Zeeman Building
[3] University of Warwick,undefined
来源
Communications in Mathematical Physics | 2015年 / 333卷
关键词
Black Hole; Quasinormal Mode; Stationary Black Hole; Quasinormal Frequency; Hyperbolic Operator;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the problem of quasinormal modes (QNM) for strongly hyperbolic systems on stationary, asymptotically anti-de Sitter black holes, with very general boundary conditions at infinity. We argue that for a time slicing regular at the horizon the QNM should be identified with certain Hk eigenvalues of the infinitesimal generator A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{A}}$$\end{document} of the solution semigroup. Using this definition we are able to prove directly that the quasinormal frequencies form a discrete, countable subset of C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{C}}$$\end{document} which in the globally stationary case accumulates only at infinity. We avoid any need for meromorphic extension, and the quasinormal modes are honest eigenfunctions of an operator on a Hilbert space. Our results apply to any of the linear fields usually considered (Klein- Gordon, Maxwell, Dirac, etc.) on a stationary black hole background, and do not rely on any separability or analyticity properties of the metric. Our methods and results largely extend to the locally stationary case. We provide a counter-example to the conjecture that quasinormal modes are complete. We relate our approach directly to the approach via meromorphic continuation.
引用
收藏
页码:959 / 1035
页数:76
相关论文
共 7 条
[1]  
Bachelot A.(1991)Gravitational scattering of electromagnetic field by Schwarzschild black-hole Annales de L’Institut Henri Poincare Section Physique Theorique 54 261-320
[2]  
Bachelot A.(1993)Les résonances d’un trou noir de Schwarzschild Ann Inst. Henri Poincaré, Phys. Théor. 59 3-68
[3]  
Motet-Bachelot A.(1997)Distribution of resonances for spherical black holes Math. Res. Lett. 4 103-122
[4]  
Barreto A.S.(2011)Exponential energy decay for Kerr-de Sitter black holes beyond event horizons Math. Res. Lett. 18 1023-1035
[5]  
Zworski M.(2005)Meromorphic properties of the resolvent on asymptotically hyperbolic manifolds Duke Math. J. series 129 1-37
[6]  
Dyatlov S.(undefined)undefined undefined undefined undefined-undefined
[7]  
Guillarmou C.(undefined)undefined undefined undefined undefined-undefined