First test of an enriched 116\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{116}$$\end{document}CdWO4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_4$$\end{document} scintillating bolometer for neutrinoless double-beta-decay searches

被引:0
作者
A. S. Barabash
F. A. Danevich
Y. Gimbal-Zofka
A. Giuliani
M. Mancuso
S. I. Konovalov
P. de Marcillac
S. Marnieros
C. Nones
V. Novati
E. Olivieri
D. V. Poda
V. N. Shlegel
V. I. Tretyak
V. I. Umatov
A. S. Zolotarova
机构
[1] ITEP,National Research Centre “Kurchatov Institute”
[2] MSP,Institute for Nuclear Research
[3] Univ. Paris-Sud,CSNSM
[4] CNRS/IN2P3,Department of Physics and Electrical Engineering
[5] Université Paris-Saclay,CEA Saclay
[6] Linnaeus University,undefined
[7] DISAT,undefined
[8] Università dell’Insubria,undefined
[9] DSM/IRFU,undefined
[10] Nikolaev Institute of Inorganic Chemistry,undefined
[11] INFN,undefined
[12] sezione di Roma,undefined
[13] Presently at Max-Planck-Institut für Physik,undefined
来源
The European Physical Journal C | 2016年 / 76卷 / 9期
关键词
Neutrino Mass; Light Detector; Radioactive Contamination; Nuclear Recoil; Natural Isotopic Composition;
D O I
10.1140/epjc/s10052-016-4331-2
中图分类号
学科分类号
摘要
For the first time, a cadmium tungstate crystal scintillator enriched in 116\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{116}$$\end{document}Cd has been succesfully tested as a scintillating bolometer. The measurement was performed above ground at a temperature of 18 mK. The crystal mass was 34.5 g and the enrichment level ∼\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim $$\end{document}82 %. Despite a substantial pile-up effect due to above-ground operation, the detector demonstrated high energy resolution (2–7 keV FWHM in 0.2–2.6 MeV γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} energy range and 7.5 keV FWHM at the 116\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{116}$$\end{document}Cd double-beta decay transition energy of 2813 keV), a powerful particle identification capability and a high level of internal radio-purity. These results prove that cadmium tungstate is a promising detector material for a next-generation neutrinoless double-beta decay bolometric experiment, like that proposed in the CUPID project (CUORE Upgrade with Particle IDentification).
引用
收藏
相关论文
共 60 条
[1]  
Vergados JD(2012)The CUORE collaboration Rep. Prog. Phys. 75 106301-undefined
[2]  
Ejiri H(2012)undefined Phys. Rev. Lett. 109 042501-undefined
[3]  
Šimkovic F(2012)undefined J. Phys. G 39 124008-undefined
[4]  
Barea J(2012)undefined J. Phys. G 39 124007-undefined
[5]  
Kotila J(2015)undefined New J. Phys. 17 115010-undefined
[6]  
Iachello F(2015)undefined Int. J. Mod. Phys. A 30 1530001-undefined
[7]  
Rodejohann W(2016)undefined AHEP 2016 2162659-undefined
[8]  
Deppisch FF(2013)undefined Annu. Rev. Nucl. Part. Sci. 63 503-undefined
[9]  
Hirsch M(2015)undefined Nucl. Phys. A 935 52-undefined
[10]  
Päs H(2015)undefined Phys. Proc. 74 416-undefined