共 23 条
[1]
Bosman P.A.N., Thierens D., The balance between proximity and diversity in multiobjective evolutionary algorithms, IEEE Trans. Evol. Comput., 7, 2, pp. 174-188, (2003)
[2]
Consoli P.A., Mei Y., Minku L.L., Yao X., Dynamic selection of evolutionary operators based on online learning and fitness landscape analysis, Soft. Comput., 20, 10, pp. 3889-3914, (2016)
[3]
Eiben A.E., Horvath M., Kowalczyk W., Schut M.C., Reinforcement learning for online control of evolutionary algorithms, International Workshop on Engineering Self-Organising Applications, pp. 151-160, (2006)
[4]
Ginley B.M., Maher J., O'Riordan C., Morgan F., Maintaining healthy population diversity using adaptive crossover, mutation, and selection, IEEE Trans. Evol. Comput., 15, 5, pp. 692-714, (2011)
[5]
Goncalves R.A., Almeida C.P., Pozo A., Upper Confidence Bound (UCB) Algorithms for Adaptive Operator Selection in MOEA/D, Lecture Notes in Computer Science, pp. 411-425, (2015)
[6]
Karafotias G., Eiben A.E., Hoogendoorn M., Generic parameter control with reinforcement learning, Conference on Genetic and Evolutionary Computation, pp. 1319-1326, (2014)
[7]
Karafotias G., Hoogendoorn M., Eiben A., Parameter control in evolutionary algorithms: trends and challenges, IEEE Trans. Evol. Comput., 19, 2, pp. 167-187, (2015)
[8]
Karafotias G., Hoogendoorn M., Eiben A.E., Evaluating Reward Definitions for Parameter Control, Applications of Evolutionary Computation, pp. 667-680, (2015)
[9]
Li K., Fialho A., Kwong S., Zhang Q., Adaptive operator selection with bandits for a multiobjective evolutionary algorithm based on decomposition, IEEE Trans. Evol. Comput., 18, 1, pp. 114-130, (2014)
[10]
Lin Q., Liu Z., Yan Q., Du Z., Coello C.A.C., Liang Z., Wang W., Chen J., Adaptive composite operator selection and parameter control for multiobjective evolutionary algorithm, Inf. Sci., 339, pp. 332-352, (2016)