Improving premise structure in evolving Takagi-Sugeno neuro-fuzzy classifiers

被引:22
作者
Almaksour A. [1 ]
Anquetil E. [1 ]
机构
[1] INSA de Rennes/UMR IRISA, 35043 Rennes, Avenue des Buttes de Coesmes
关键词
Incremental learning; Neuro-fuzzy; Takagi-Sugeno;
D O I
10.1007/s12530-011-9027-0
中图分类号
学科分类号
摘要
We present in this paper a new method for the design of evolving neuro-fuzzy classifiers. The presented approach is based on a first-order Takagi-Sugeno neuro-fuzzy model. We propose a modification on the premise structure in this model and we provide the necessary learning formulas, with no problem-dependent parameters. We demonstrate by the experimental results the positive effect of this modification on the overall classification performance. © 2011 Springer-Verlag.
引用
收藏
页码:25 / 33
页数:8
相关论文
共 24 条
  • [1] Aha D.W., Kibler D., Albert M.K., Instance-based learning algorithms, Mach Learn, 6, 1, pp. 37-66, (1991)
  • [2] Angelov P., An approach for fuzzy rule-base adaptation using on-line clustering, Int J Approx Reason, 35, 3, pp. 275-289, (2004)
  • [3] Angelov P., Evolving Takagi-Sugeno fuzzy systems from streaming data, ets+, Evolving Intelligent Systems: Methodology and Applications, pp. 21-50, (2010)
  • [4] Angelov P., Filev D., On-line design of Takagi-Sugeno models, IFSA'03: Proceedings of the 10th international fuzzy systems association World Congress conference on Fuzzy sets and systems, pp. 576-584, (2003)
  • [5] Angelov P., Filev D., An approach to online identification of Takagi-Sugeno fuzzy models, IEEE Trans Syst Man Cybern, 34, 1, pp. 484-498, (2004)
  • [6] Angelov P., Lughofer E., Zhou X., Evolving fuzzy classifiers using different model architectures, Fuzzy Sets Syst, 159, 23, pp. 3160-3182, (2008)
  • [7] Angelov P., Zhou X., Evolving fuzzy systems from data streams in real-time, IEEE symposium on evolving fuzzy systems, (2006)
  • [8] Carpenter G., Grossberg S., Markuzon N., Reynolds J., Rosen D., Fuzzy artmap: a neural network architecture for incremental supervised learning of analog multidimensional maps, IEEE Trans Neural Netw, 3, pp. 698-713, (1992)
  • [9] Carpenter G.A., Grossberg S., The art of adaptive pattern recognition by a self-organizing neural network, Computer, 21, 3, pp. 77-88, (1988)
  • [10] de Backer S., Scheunders P., Texture segmentation by frequency-sensitive elliptical competitive learning, Image Vis Comput, 19, 9-10, pp. 639-648, (2001)