Simplified gravitational collapse with an interacting vacuum energy densityCurvature effects

被引:0
|
作者
E. L. D. Perico
J. A. S. Lima
M. Campos
机构
[1] Universidade de São Paulo,Instituto de Física
[2] Universidade de São Paulo,Departamento de Astronomia
[3] Universidade de São Paulo,Departamento de Astronomia
[4] Universidade Federal de Roraima,Departamento de Física
[5] Universidade de Federal do Espírito Santo,Departamento de Física
来源
General Relativity and Gravitation | 2016年 / 48卷
关键词
Gravitational collapse; Vacuum energy; Cosmic censorship; Black holes;
D O I
暂无
中图分类号
学科分类号
摘要
The gravitational collapse of a spherical core, in which the fluid component interact with a growing vacuum energy density, filling an homogeneous and isotropic geometry with an arbitrary curvature parameter, is investigated. The complete set of exact solutions for all values of the free parameters are obtained, and the influence of the curvature term on the collapsing time, black hole mass and other physical quantities are also discussed in detail. We show that for the same initial conditions the total black hole mass depends only on the effective matter density parameter (including the vacuum component). It is also shown that the analytical condition to form a black hole, i.e. the formation of an apparent horizon, is not altered by the contribution of the curvature terms, however, the remaining physical quantities are quantitatively modified.
引用
收藏
相关论文
共 50 条
  • [31] Tunneling into microstate geometries: quantum effects stop gravitational collapse
    Bena, Iosif
    Mayerson, Daniel R.
    Puhm, Andrea
    Vercnocke, Bert
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (07):
  • [32] Gravitational collapse due to dark matter and dark energy in the braneworld scenario
    Nath, Soma
    Chakraborty, Subenoy
    Debnath, Ujjal
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2006, 15 (08): : 1225 - 1236
  • [33] Shear-free gravitational collapse of dust cloud and dark energy
    Pandey, Anjali
    Kumar, Rajesh
    Srivastava, Sudhir Kumar
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2022, 19 (06)
  • [34] Varying vacuum energy of a self-interacting scalar field
    Trachenko, K.
    ANNALS OF PHYSICS, 2015, 362 : 74 - 82
  • [35] How to bypass Birkhoff through extra dimensions: A simple framework for investigating the gravitational collapse in vacuum
    Bizon, Piotr
    Schmidt, Bernd G.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2006, 15 (12): : 2217 - 2222
  • [36] Wheeler-DeWitt equation and the late gravitational collapse: Effects of factor ordering and the tunneling scenario
    Batic, Davide
    Nowakowski, M.
    Kelkar, N. G.
    ANNALS OF PHYSICS, 2024, 469
  • [37] Effects of electromagnetic field on gravitational collapse in f(R, T) gravity
    Muhammad Shoaib Khan
    Suhail Khan
    General Relativity and Gravitation, 2019, 51
  • [38] Gravitational collapse of rotating supermassive stars including nuclear burning effects
    Uchida, Haruki
    Shibata, Masaru
    Yoshida, Takashi
    Sekiguchi, Yuichiro
    Umeda, Hideyuki
    PHYSICAL REVIEW D, 2017, 96 (08)
  • [39] Effects of electromagnetic field on gravitational collapse in f(R, T) gravity
    Khan, Muhammad Shoaib
    Khan, Suhail
    GENERAL RELATIVITY AND GRAVITATION, 2019, 51 (11)
  • [40] Gravitational Collapse with Dark Energy and Dark Matter in Horava-Lifshitz Gravity
    Rudra, Prabir
    Debnath, Ujjal
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2014, 53 (08) : 2668 - 2687