Algebras of Calderón–Zygmund Operators on Spaces of Homogeneous Type

被引:0
作者
Fanghui Liao
Yan Wang
Zhengyang Li
机构
[1] Xiangtan University,School of Mathematics & Computational Science
[2] Hunan University of Science and Technology,School of Mathematics & Computational Science
来源
The Journal of Geometric Analysis | 2022年 / 32卷
关键词
Algebra; Calderón–Zygmund operator; Calderón reproducing formula; Space of homogeneous type; 42B20; 42B35;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, using continuous Calderón’s reproducing formulas, we obtain algebras of Calderón–Zygmund operators on spaces of homogenous type in the setting of both one parameter and bi-parameter. More precisely, all classical Calderón–Zygmund operators form an algebra when T(1)=T∗(1)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T(1)=T^*(1)=0$$\end{document} and all product singular integral operators in Journé’s class form an algebra when T1(1)=T1∗(1)=T2(1)=T2∗(1)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_1(1)=T_1^*(1)=T_2(1)=T_2^*(1)\,{=}\,0$$\end{document}.
引用
收藏
相关论文
共 27 条
[1]  
Calderón AP(1956)Algebras of certain singular operators Am. J. Math. 78 310-320
[2]  
Zygmund A(2003)Algebra of Calderón-Zygmund operators on spaces of homogeneous type Taiwan. J. Math. 7 309-328
[3]  
Han Y(2006)Algebra of Calderón-Zygmund operators associated to para-accretive functions J. Fourier Anal. Appl. 12 581-596
[4]  
Lin CC(1985)Calderón-Zygmund operators on product spaces Rev. Mat. Iberoam. 1 55-91
[5]  
Han Y(2012)Representation of bi-parameter singular integrals by dyadic operators Adv. Math. 229 1734-1761
[6]  
Lee MY(2016)Comparison of Proc. Am. Math. Soc. 144 2437-2443
[7]  
Lin CC(2005) conditions for multi-parameter operators Math. Z. 249 869-881
[8]  
Journé JL(2008) boundedness of Calderón-Zygmund operators on product spaces Abstr. Appl. Anal. 10 99-191
[9]  
Martikainen H(2010)A theory of Besov and Triebel-Lizorkin spaces on metric measure spaces modeled on Carnot-Carathéodory spaces Trends Partial Differ. Equ. ALM 16 845-907
[10]  
Grau de la Herrán A(2016)Some recent works on multiparameter Hardy space theory and discrete Littlewood-Paley analysis Ann. Sc. Norm. Super. Pisa Cl. Sci. 33 257-270