Ensemble averaging in JT gravity from entanglement in Matrix Quantum Mechanics

被引:0
作者
Gabriele Di Ubaldo
Giuseppe Policastro
机构
[1] Institut de Physique Théorique,Université Paris
[2] Université PSL,Saclay, CNRS, CEA
[3] CNRS,Laboratoire de Physique de l’École Normale Supérieure, ENS
[4] Sorbonne Université,undefined
[5] Université de Paris,undefined
来源
Journal of High Energy Physics | / 2023卷
关键词
2D Gravity; AdS-CFT Correspondence; Black Holes; Matrix Models;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the generalization of a matrix integral with arbitrary spectral curve ρ0(E) to a 0+1D theory of matrix quantum mechanics (MQM). Using recent techniques for 1D quantum systems at large-N, we formulate a hydrodynamical effective theory for the eigenvalues. The result is a simple 2D free boson BCFT on a curved background, describing the quantum fluctuations of the eigenvalues around ρ0(E), which is now the large-N limit of the quantum expectation value of the eigenvalue density operator ρ̂E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \hat{\rho}(E) $$\end{document}.
引用
收藏
相关论文
共 140 条
[1]  
Anninos D(2020) = J. Stat. Mech. 2008 1-undefined
[2]  
Mühlmann B(1995) ⟹ Phys. Rept. 254 2771-undefined
[3]  
Di Francesco P(2004) = 1 Int. J. Mod. Phys. A 19 231-undefined
[4]  
Ginsparg PH(1998)undefined Adv. Theor. Math. Phys. 2 253-undefined
[5]  
Zinn-Justin J(1998)undefined Adv. Theor. Math. Phys. 2 105-undefined
[6]  
Nakayama Y(1998)undefined Phys. Lett. B 428 014-undefined
[7]  
Maldacena JM(2015)undefined JHEP 11 183-undefined
[8]  
Witten E(2016)undefined Phys. Rev. D 94 165-undefined
[9]  
Gubser SS(2018)undefined JHEP 05 177-undefined
[10]  
Klebanov IR(2005)undefined Comptes Rendus Physique 6 184-undefined