Remark on stabilization of tree-shaped networks of strings

被引:0
作者
Kaïs Ammari
Mohamed Jellouli
机构
[1] Faculty of Sciences of Monastir,Department of Mathematics
来源
Applications of Mathematics | 2007年 / 52卷
关键词
networks of strings; input-output map; well-posed system;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a tree-shaped network of vibrating elastic strings, with feedback acting on the root of the tree. Using the d’Alembert representation formula, we show that the input-output map is bounded, i.e. this system is a well-posed system in the sense of G. Weiss (Trans. Am. Math. Soc. 342 (1994), 827–854). As a consequence we prove that the strings networks are not exponentially stable in the energy space. Moreover, we give explicit polynomial decay estimates valid for regular initial data.
引用
收藏
页码:327 / 343
页数:16
相关论文
共 18 条
  • [1] Ammari K.(2004)Stabilization of star-shaped networks of strings Differ. Integral Equations 17 1395-1410
  • [2] Jellouli M.(2005)Stabilization of generic trees of strings J. Dyn. Control Syst. 11 177-193
  • [3] Ammari K.(2001)Stabilization of second order evolution equations by a class of unbounded feedbacks ESAIM, Control Optim. Calc. Var. 6 361-386
  • [4] Jellouli M.(1988)Classical solvability of linear parabolic equations in networks J. Differ. Equations 52 316-337
  • [5] Khenissi M.(2004)Observation and control of vibrations in tree-shaped networks of strings SIAM. J. Control Optim. 43 590-623
  • [6] Ammari K.(2001)Controllability of star-shaped networks of strings C. R. Acad. Sci. Paris 332 621-626
  • [7] Tucsnak M.(2001)Controllability of tree-shaped networks of vibrating strings C. R. Acad. Sci. Paris 332 1087-1092
  • [8] von Below J.(1986)Nonhomogeneous boundary value problems for second-order hyperbolic generators J. Math. Pures Appl. 65 92-149
  • [9] Dáger R.(1992)On the modelling and exact controllability of networks of vibrating strings SIAM J. Control Optim. 30 229-245
  • [10] Dáger R.(1994)Transfer functions of regular linear systems. Part I. Characterizations of regularity Trans. Am. Math. Soc. 342 827-854