Double scaling limit of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document}= 2 chiral correlators with Maldacena-Wilson loop

被引:0
作者
Matteo Beccaria
机构
[1] Dipartimento di Matematica e Fisica “Ennio De Giorgi”,
[2] Università del Salento & INFN,undefined
关键词
Conformal Field Theory; Extended Supersymmetry; Supersymmetric Gauge Theory;
D O I
10.1007/JHEP02(2019)095
中图分类号
学科分类号
摘要
We consider N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 conformal QCD in four dimensions and the one-point correlator of a class of chiral primaries with the circular 12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{1}{2} $$\end{document}-BPS Maldacena-Wilson loop. We analyze a recently introduced double scaling limit where the gauge coupling is weak while the R-charge of the chiral primary Φ is large. In particular, we consider the case Φ = (Trφ2)n, where φ is the complex scalar in the vector multiplet. The correlator defines a non-trivial scaling function at fixed κ = ngYM2 and large n that may be studied by localization. For any gauge group SU(N) we provide the analytic expression of the first correction ~ ζ(3)κ2 and prove its universality. In the SU(2) and SU(3) theories we compute the scaling functions at order O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{O} $$\end{document}(κ6). Remarkably, in the SU(2) case the scaling – function is equal to an analogous quantity describing the chiral 2-point functions ΦΦ¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left\langle \Phi \overline{\Phi}\right\rangle $$\end{document} in the same large R-charge limit. We conjecture that this SU(2) scaling function is computed at all-orders by a N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 SYM expectation value of a matrix model object characterizing the one-loop contribution to the 4-sphere partition function. The conjecture provides an explicit series expansion for the scaling function and is checked at order O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{O} $$\end{document}(κ10) by showing agreement with the available data in the sector of chiral 2-point functions.
引用
收藏
相关论文
共 47 条
[1]  
Hellerman S(2017)On the large R-charge expansion in N = 2 superconformal field theories JHEP 12 135-undefined
[2]  
Maeda S(2018)A limit for large R-charge correlators in N = 2 theories JHEP 05 074-undefined
[3]  
Bourget A(1991)Topological antitopological fusion Nucl. Phys. B 367 359-undefined
[4]  
Rodriguez-Gomez D(1992)Exact results for supersymmetric σ-models Phys. Rev. Lett. 68 903-undefined
[5]  
Russo JG(2019)On the large R-charge N = 2 chiral correlators and the Toda equation JHEP 02 009-undefined
[6]  
Cecotti S(2019)Universality of Toda equation in N = 2 superconformal field theories JHEP 02 011-undefined
[7]  
Vafa C(1998)Wilson loops in large N field theories Phys. Rev. Lett. 80 4859-undefined
[8]  
Cecotti S(2001)Macroscopic strings as heavy quarks in large N gauge theory and anti-de Sitter supergravity Eur. Phys. J. C 22 379-undefined
[9]  
Vafa C(2011)Exact results and holography of Wilson loops in N = 2 superconformal (quiver) gauge theories JHEP 01 136-undefined
[10]  
Beccaria M(2016)Exact Bremsstrahlung function in N = 2 superconformal field theories Phys. Rev. Lett. 116 440301-undefined