Two Examples Related to the Twisted Burnside–Frobenius Theory for Infinitely Generated Groups

被引:0
|
作者
Troitsky E.V. [1 ]
机构
[1] Moscow State University, Moscow
关键词
D O I
10.1007/s10958-020-04903-0
中图分类号
学科分类号
摘要
TheTBFTf conjecture, which is a modification of a conjecture by Fel’shtyn and Hill, says that if the Reidemeister number R(ϕ) of an automorphism ϕ of a (countable discrete) group G is finite, then it coincides with the number of fixed points of the corresponding homeomorphism ϕ̂ of Ĝ f (the part of the unitary dual formed by finite-dimensional representations). The study of this problem for residually finite groups has been the subject of some recent activity. We prove here that for infinitely generated residually finite groups there are positive and negative examples for this conjecture. It is detected that the finiteness properties of the number of fixed points of ϕ itself also differ from the finitely generated case. © 2020, Springer Science+Business Media, LLC, part of Springer Nature.
引用
收藏
页码:661 / 666
页数:5
相关论文
共 15 条
  • [1] Twisted Burnside-Frobenius theory for discrete groups
    Fel'shtyn, Alexander
    Troitsky, Evgenij
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2007, 613 : 193 - 210
  • [2] Twisted Burnside–Frobenius Theory for Endomorphisms of Polycyclic Groups
    A. L. Fel’shtyn
    E. V. Troitsky
    Russian Journal of Mathematical Physics, 2018, 25 : 17 - 26
  • [3] Twisted Burnside-Frobenius Theory for Endomorphisms of Polycyclic Groups
    Fel'shtyn, A. L.
    Troitsky, E. V.
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2018, 25 (01) : 17 - 26
  • [4] Twisted Burnside-Frobenius theory for virtually polycyclic groups
    Fel'shtyn, Alexander
    Troitsky, Evgenij
    COMPTES RENDUS MATHEMATIQUE, 2008, 346 (19-20) : 1033 - 1038
  • [5] Twisted Burnside-Frobenius theory for discrete groups (vol 613, pg 193, 2007)
    Fel'shtyn, Alexander
    Troitsky, Evgenij
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2020, 766 : 229 - 230
  • [6] New Zeta Functions of Reidemeister Type and the Twisted Burnside–Frobenius Theory
    A. Fel’shtyn
    E. Troitsky
    M. Ziętek
    Russian Journal of Mathematical Physics, 2020, 27 : 199 - 211
  • [7] New Zeta Functions of Reidemeister Type and the Twisted Burnside-Frobenius Theory
    Fel'shtyn, A.
    Troitsky, E.
    Zietek, M.
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2020, 27 (02) : 199 - 211
  • [8] TWISTED BURNSIDE-FROBENIUS THEOREM AND R∞-PROPERTY FOR LAMPLIGHTER-TYPE GROUPS
    Fraiman, M., I
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2020, 17 : 890 - 898
  • [9] Twisted Burnside Theory for the Discrete Heisenberg Group and for Wreath Products of Some Groups
    Indukaev, F. K.
    MOSCOW UNIVERSITY MATHEMATICS BULLETIN, 2007, 62 (06) : 219 - 227
  • [10] Frobenius groups generated by two elements of order 3
    Zhurtov, AK
    SIBERIAN MATHEMATICAL JOURNAL, 2001, 42 (03) : 450 - 454