Old and New Morrey Spaces with Heat Kernel Bounds

被引:21
作者
Xuan Thinh Duong
Jie Xiao
Lixin Yan
机构
[1] Department of Mathematics,
[2] MacQuarie University,undefined
[3] Department of Mathematics and Statistics,undefined
[4] Memorial University of Newfoundland,undefined
[5] Department of Mathematics,undefined
[6] Zhongshan University,undefined
来源
Journal of Fourier Analysis and Applications | 2007年 / 13卷
关键词
Heat Kernel; Singular Integral Operator; Analytic Semigroup; Morrey Space; Complex Banach Space;
D O I
暂无
中图分类号
学科分类号
摘要
Given p ∈ [1,∞) and λ ∈ (0, n), we study Morrey space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{p,\lambda}({\Bbb R}^n)$\end{document} of all locally integrable complex-valued functions f on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\Bbb R}^n$\end{document} such that for every open Euclidean ball B ⊂ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\Bbb R}^n$\end{document} with radius rB there are numbers C = C(f ) (depending on f ) and c = c(f,B) (relying upon f and B) satisfying \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$r^{-\lambda}_B\sum_B \vert f(x) -c\vert^p dx\leq C$\end{document} and derive old and new, two essentially different cases arising from either choosing \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$c = f_B = \vert B\vert^{−1} \sum_B f (y)dy$\end{document} or replacing c by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$P_{t_B} (x) = \sum_{t_B} p_{t_B} (x, y)f (y) dy$\end{document}—where tB is scaled to rB and pt(·, ·) is the kernel of the infinitesimal generator L of an analytic semigroup \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{e^{−tL}\}_{t\geq 0}$\end{document} on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^2({\Bbb R}^n).$\end{document} Consequently, we are led to simultaneously characterize the old and new Morrey spaces, but also to show that for a suitable operator L, the new Morrey space is equivalent to the old one.
引用
收藏
页码:87 / 111
页数:24
相关论文
empty
未找到相关数据