Given p ∈ [1,∞) and λ ∈ (0, n), we study Morrey space \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$L^{p,\lambda}({\Bbb R}^n)$\end{document} of all locally integrable complex-valued functions f on \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\Bbb R}^n$\end{document} such that for every open Euclidean ball B ⊂ \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\Bbb R}^n$\end{document} with radius rB there are numbers C = C(f ) (depending on f ) and c = c(f,B) (relying upon f and B) satisfying
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$r^{-\lambda}_B\sum_B \vert f(x) -c\vert^p dx\leq C$\end{document} and derive old and new, two essentially different cases arising from either choosing \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$c = f_B = \vert B\vert^{−1} \sum_B f (y)dy$\end{document} or replacing c by \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$P_{t_B} (x) = \sum_{t_B} p_{t_B} (x, y)f (y) dy$\end{document}—where tB is scaled to rB and pt(·, ·) is the kernel of the infinitesimal generator L of an analytic semigroup \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\{e^{−tL}\}_{t\geq 0}$\end{document} on \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$L^2({\Bbb R}^n).$\end{document} Consequently, we are led to simultaneously characterize the old and new Morrey spaces, but also to show that for a suitable operator L, the new Morrey space is equivalent to the old one.