Neighbor Sum (Set) Distinguishing Total Choosability Via the Combinatorial Nullstellensatz

被引:0
作者
Laihao Ding
Guanghui Wang
Jianliang Wu
Jiguo Yu
机构
[1] Shandong University,School of Mathematics
[2] Qufu Normal University,School of Computer Science
来源
Graphs and Combinatorics | 2017年 / 33卷
关键词
Neighbor sum distinguishing total coloring; Coloring number; Combinatorial Nullstellensatz; List total coloring;
D O I
暂无
中图分类号
学科分类号
摘要
Let G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=(V,E)$$\end{document} be a graph and ϕ:V∪E→{1,2,…,k}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi :V\cup E\rightarrow \{1,2,\ldots ,k\}$$\end{document} be a total coloring of G. Let C(v) denote the set of the color of vertex v and the colors of the edges incident with v. Let f(v) denote the sum of the color of vertex v and the colors of the edges incident with v. The total coloring ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} is called neighbor set distinguishing or adjacent vertex distinguishing if C(u)≠C(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C(u)\ne C(v)$$\end{document} for each edge uv∈E(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$uv\in E(G)$$\end{document}. We say that ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} is neighbor sum distinguishing if f(u)≠f(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(u)\ne f(v)$$\end{document} for each edge uv∈E(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$uv\in E(G)$$\end{document}. In both problems the challenging conjectures presume that such colorings exist for any graph G if k≥Δ(G)+3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge \varDelta (G)+3$$\end{document}. In this paper, by using the famous Combinatorial Nullstellensatz, we prove that in both problems k≥Δ(G)+2col(G)-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge \varDelta (G)+2\mathrm{col}(G)-2$$\end{document} is sufficient, moreover we prove that if G is not a forest and Δ≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta \ge 4$$\end{document}, then k≥Δ(G)+2col(G)-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge \varDelta (G)+2\mathrm{col}(G)-3$$\end{document} is sufficient, where col(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{col}(G)$$\end{document} is the coloring number of G. In fact we prove these results in their list versions, which improve the previous results. As a consequence, we obtain an upper bound of the form Δ(G)+C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta (G)+C$$\end{document} for some families of graphs, e.g. Δ+9\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta +9$$\end{document} for planar graphs. In particular, we therefore obtain that when Δ≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta \ge 4$$\end{document} two conjectures we mentioned above hold for 2-degenerate graphs (with coloring number at most 3) in their list versions.
引用
收藏
页码:885 / 900
页数:15
相关论文
共 60 条
[1]  
Alon N(1999)Combinatorial Nullstellensatz Combin. Probab. Comput. 8 7-29
[2]  
Chartrand G(1988)Irregular networks Congr. Numer. 64 197-210
[3]  
Jacobson M(2008)On the adjacent vertex distinguishing total coloring numbers of graphs with Discrete Math. 308 4003-4007
[4]  
Lehel J(2015)Neighbor sum distinguishing total colorings of planar graphs with maximum degree Discrete Appl. Math. 190 34-41
[5]  
Oellermann O(2014)Neighbor sum distinguishing total colorings via the Combinatorial Nullstellensatz Sci. Sin. Math. 57 1875-1882
[6]  
Ruiz S(2014)Neighbor sum distinguishing total colorings of graphs with bounded maximum average degree Acta Math. Sin. 30 703-709
[7]  
Saba F(2012)Adjacent vertex distinguishing total coloring of planar graphs with large maximum degree, (in Chinese) Sci. Sin. Math. 42 151-164
[8]  
Chen X(2012)Weighted-1-antimagic graphs of prime power order Discrete Math. 312 2162-2169
[9]  
Cheng X(2010)Vertex-coloring edge-weightings: towards the 1–2–3-conjecture J. Combin. Theory Ser. B 100 347-349
[10]  
Wu J(2004)Edge weights and vertex colours J. Combin. Theory Ser. B 91 151-157