Isoperimetric Inequalities for Higher Eigenvalues of the Laplace—Beltrami Operator on Surfaces

被引:0
|
作者
Alexei V. Penskoi
机构
[1] Moscow State University,Faculty of Mechanics and Mathematics
[2] National Research University Higher School of Economics,Faculty of Mathematics
来源
Proceedings of the Steklov Institute of Mathematics | 2019年 / 305卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Recent advances in isoperimetric inequalities for higher eigenvalues of the Laplace-Beltrami operator on the sphere and on the projective plane are discussed.
引用
收藏
页码:270 / 286
页数:16
相关论文
共 50 条
  • [1] Isoperimetric Inequalities for Higher Eigenvalues of the Laplace-Beltrami Operator on Surfaces
    Penskoi, Alexei V.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2019, 305 (01) : 270 - 286
  • [2] Isoperimetric Inequalities for Eigenvalues of the Laplace Operator
    Benguria, Rafael D.
    Linde, Helmut
    FOURTH SUMMER SCHOOL IN ANALYSIS AND MATHEMATICAL PHYSICS: TOPIC IN SPECTRAL THEORY AND QUANTUM MECHANICS, 2008, 476 : 1 - 40
  • [3] STABILITY OF ISOPERIMETRIC INEQUALITIES FOR LAPLACE EIGENVALUES ON SURFACES
    Karpukhin, Mikhail
    Nahon, Mickael
    Polterovich, Iosif
    Stern, Daniel
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2025, 129 (02) : 415 - 490
  • [4] Extremal metrics for eigenvalues of the Laplace-Beltrami operator on surfaces
    Penskoi, A. V.
    RUSSIAN MATHEMATICAL SURVEYS, 2013, 68 (06) : 1073 - 1130
  • [5] Laplace–Beltrami Operator on Digital Surfaces
    Thomas Caissard
    David Coeurjolly
    Jacques-Olivier Lachaud
    Tristan Roussillon
    Journal of Mathematical Imaging and Vision, 2019, 61 : 359 - 379
  • [6] Eigenvalues of the Laplace-Beltrami operator on a prolate spheroid
    Volkmer, Hans
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 373 : 411 - 445
  • [7] EIGENVALUES OF THE LAPLACE-BELTRAMI OPERATOR AND THE VONMANGOLDT FUNCTION
    FUJII, A
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1993, 69 (05) : 125 - 130
  • [8] Isoperimetric inequalities for eigenvalues of the Laplacian and the Schrodinger operator
    Benguria, Rafael D.
    Linde, Helmut
    Loewe, Benjamin
    BULLETIN OF MATHEMATICAL SCIENCES, 2012, 2 (01) : 1 - 56
  • [9] Laplace-Beltrami Operator on Digital Surfaces
    Caissard, Thomas
    Coeurjolly, David
    Lachaud, Jacques-Olivier
    Roussillon, Tristan
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2019, 61 (03) : 359 - 379
  • [10] A Discrete Laplace–Beltrami Operator for Simplicial Surfaces
    Alexander I. Bobenko
    Boris A. Springborn
    Discrete & Computational Geometry, 2007, 38 : 740 - 756