Spacetime instability and quantum gravity as low energy effective field theory

被引:0
作者
Hiroki Matsui
机构
[1] Kyoto University,Center for Gravitational Physics and Quantum Information, Yukawa Institute for Theoretical Physics
来源
General Relativity and Gravitation | 2022年 / 54卷
关键词
Quantum gravity; Cosmology; Effective field theory;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss spacetime instability for effective field theories of quantum gravity. The effective action of gravity introduces infinite higher derivative curvature terms R2,RμνRμν,RμνκλRμνκλ⋯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^{2}, { R }_{ \mu \nu }{ R }^{ \mu \nu }, R_{\mu \nu \kappa \lambda } R^{\mu \nu \kappa \lambda }\dots $$\end{document}. Although these higher derivative curvature terms are indispensable to construct the self-consistent renormalizable theory of quantum gravity, they lead to several pathologies. We clearly show that even if they are written as the Planck-suppressed operators they lead to serious consequences and and de Sitter or radiation-dominated Universe is highly unstable. We show that the couplings of these higher derivative curvatures must satisfy a1,2,3≳10118\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left| a_{1,2,3}\right| \gtrsim 10^{118}$$\end{document} to be consistent with the cosmological observations. Thus, the standard effective field theories of quantum gravity fail to describe the observed Universe unless introducing a specific technique dealing with the higher derivative curvature terms.
引用
收藏
相关论文
共 140 条
  • [1] Stelle KS(1977)Renormalization of higher derivative quantum gravity Phys. Rev. D 16 953-969
  • [2] Asorey M(1997)Some remarks on high derivative quantum gravity Int. J. Mod. Phys. A 12 5711-5734
  • [3] Lopez JL(1980)Renormalizability and asymptotic freedom in quantum gravity Phys. Lett. 97B 77-80
  • [4] Shapiro IL(1986)Gauge invariance and unitarity in higher derivative quantum gravity Phys. Rev. D 33 2756-416
  • [5] Tomboulis E(2012)Super-renormalizable quantum gravity Phys. Rev. D 86 044005-3603
  • [6] Antoniadis I(1978)Dynamics of Einstein’s equation modified by a higher order derivative term Phys. Rev. D 17 414-2220
  • [7] Tomboulis ET(1981)Stability of the Minkowski vacuum in the renormalized semiclassical theory of gravity J. Phys. A 14 L229-102
  • [8] Modesto L(1987)Stability of flat space-time in quantum gravity Phys. Rev. D 36 3593-861
  • [9] Horowitz GT(1989)Minkowski space-time is unstable in semiclassical gravity Phys. Rev. Lett. 62 2217-317
  • [10] Wald RM(1989)The stability of the semiclassical Einstein equation Phys. Rev. D 40 315-3888