Regression function estimation on non compact support in an heteroscesdastic model

被引:0
|
作者
F. Comte
V. Genon-Catalot
机构
[1] Université Paris Descartes,Laboratoire MAP5 UMR CNRS 8145
来源
Metrika | 2020年 / 83卷
关键词
Heteroscedatic regression model; Least squares estimation; Model selection; Projection estimator;
D O I
暂无
中图分类号
学科分类号
摘要
We study the problem of nonparametric regression function estimation on non necessarily compact support in a heteroscedastic model with non necessarily bounded variance. A collection of least squares projection estimators on m-dimensional functional linear spaces is built. We prove new risk bounds for the estimator with fixed m and propose a new selection procedure relying on inverse problems methods leading to an adaptive estimator. Contrary to more standard cases, the data-driven dimension is chosen within a random set and the penalty is random. Examples and numerical simulations results show that the procedure is easy to implement and provides satisfactory estimators.
引用
收藏
页码:93 / 128
页数:35
相关论文
共 50 条