Regression function estimation on non compact support in an heteroscesdastic model

被引:0
|
作者
F. Comte
V. Genon-Catalot
机构
[1] Université Paris Descartes,Laboratoire MAP5 UMR CNRS 8145
来源
Metrika | 2020年 / 83卷
关键词
Heteroscedatic regression model; Least squares estimation; Model selection; Projection estimator;
D O I
暂无
中图分类号
学科分类号
摘要
We study the problem of nonparametric regression function estimation on non necessarily compact support in a heteroscedastic model with non necessarily bounded variance. A collection of least squares projection estimators on m-dimensional functional linear spaces is built. We prove new risk bounds for the estimator with fixed m and propose a new selection procedure relying on inverse problems methods leading to an adaptive estimator. Contrary to more standard cases, the data-driven dimension is chosen within a random set and the penalty is random. Examples and numerical simulations results show that the procedure is easy to implement and provides satisfactory estimators.
引用
收藏
页码:93 / 128
页数:35
相关论文
共 50 条
  • [21] Focused and Model Average Estimation for Regression Analysis of Panel CountData
    Wang, Haiying
    Li, Yang
    Sun, Jianguo
    SCANDINAVIAN JOURNAL OF STATISTICS, 2015, 42 (03) : 732 - 745
  • [22] MODEL ESTIMATION IN NONLINEAR-REGRESSION UNDER SHAPE INVARIANCE
    KNEIP, A
    ENGEL, J
    ANNALS OF STATISTICS, 1995, 23 (02) : 551 - 570
  • [23] Estimation of a simple linear regression model for fuzzy random variables
    Gonzalez-Rodriguez, Gil
    Blanco, Angela
    Colubi, Ana
    Asuncion Lubiano, M.
    FUZZY SETS AND SYSTEMS, 2009, 160 (03) : 357 - 370
  • [24] A fuzzy logistic regression model based on the least squares estimation
    Yifan Gao
    Qiujun Lu
    Computational and Applied Mathematics, 2018, 37 : 3562 - 3579
  • [25] A modified support vector regression: Integrated selection of training subset and model
    Che, JinXing
    Yang, YouLong
    Li, Li
    Li, YanYing
    Zhu, SuLing
    APPLIED SOFT COMPUTING, 2017, 53 : 308 - 322
  • [26] BAYESIAN MODEL SELECTION AND PARAMETER ESTIMATION IN PENALIZED REGRESSION MODEL USING SMC SAMPLERS
    Thi Le Thu Nguyen
    Septier, Francois
    Peters, Gareth W.
    Delignon, Yves
    2013 PROCEEDINGS OF THE 21ST EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2013,
  • [27] Improved Model Selection Method for a Regression Function with Dependent Noise
    D. Fourdrinier
    S. Pergamenshchikov
    Annals of the Institute of Statistical Mathematics, 2007, 59 : 435 - 464
  • [28] Model Selection in Kernel Based Regression using the Influence Function
    Debruyne, Michiel
    Hubert, Mia
    Suykens, Johan A. K.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2008, 9 : 2377 - 2400
  • [29] Improved model selection method for a regression function with dependent noise
    Fourdrinier, D.
    Pergamenshchikov, S.
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2007, 59 (03) : 435 - 464
  • [30] A Robust Estimation Method for Nonlinear Model Coefficients Using Ridge Regression
    Xu, Qiang
    Zhang, Wei
    Wang, Guizhen
    Xia, Xiangjie
    Liu, Ying
    Tang, Youxi
    2020 IEEE INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY (ISSPIT 2020), 2020,