Completely Integrable Systems Connected with Lie Algebras

被引:0
作者
Stanisław P. Kasperczuk
机构
[1] Pedagogical University,Institute of Physics
来源
Celestial Mechanics and Dynamical Astronomy | 2000年 / 76卷
关键词
Lie algebra; Poisson manifold; Casimir function; Poisson bialgebra; integrable system;
D O I
暂无
中图分类号
学科分类号
摘要
In a recent paper Ballersteros and Ragnisco (1998) have proposed a new method of constructing integrable Hamiltonian systems. A new class of integrable systems may be devised using the following sequence: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{A} \to \Lambda \to C \to \tilde \Lambda \to \{ .,\;.\} _{\tilde \Lambda } \to (A,\;\vartriangle )$$ \end{document}, where A is a Lie algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\text{(R}}^{\text{3}} ,[.,\;.]),\;\Lambda $$ \end{document} is a Lie–Poisson structure on R3, C is a Casimir for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\Lambda ,\;\{ .,\;.\} _{\tilde \Lambda } $$ \end{document} is a reduced Poisson bracket and (A, ▵) is a bialgebra. We study the relation between a Lie-Poisson stucture Λ and a reduced Poisson bracket \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\{ ,\;\} _{\tilde \Lambda } $$ \end{document}, which is a key element in using the Lie algebra A to constructing this sequence. New examples of Lie algebras and their related integrable Hamiltonian systems are given.
引用
收藏
页码:215 / 227
页数:12
相关论文
共 10 条
  • [1] Ballesteros J.E.(1998)undefined J. Phys. A: Math. Gen. 31 3791-undefined
  • [2] Ragnisco O.(1995)undefined Phys. Lett. A 201 306-undefined
  • [3] Calogero F.(1995)undefined Phys. Rep. 263 153-undefined
  • [4] Carinena J.E.(1990)undefined Int. J. Mod. Phys. A 5 1-undefined
  • [5] Ibort L.A.(1992)undefined Int. J. Mod. Phys. A 7 6175-undefined
  • [6] Marmo G.(1983)undefined J. Diff. Geom. 18 523-undefined
  • [7] Stern A.(undefined)undefined undefined undefined undefined-undefined
  • [8] Majid S.(undefined)undefined undefined undefined undefined-undefined
  • [9] Tjin T.(undefined)undefined undefined undefined undefined-undefined
  • [10] Weinstein A.(undefined)undefined undefined undefined undefined-undefined