In a recent paper Ballersteros and Ragnisco (1998) have proposed a new method of constructing integrable Hamiltonian systems. A new class of integrable systems may be devised using the following sequence: \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\mathcal{A} \to \Lambda \to C \to \tilde \Lambda \to \{ .,\;.\} _{\tilde \Lambda } \to (A,\;\vartriangle )$$
\end{document}, where A is a Lie algebra \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$${\text{(R}}^{\text{3}} ,[.,\;.]),\;\Lambda $$
\end{document} is a Lie–Poisson structure on R3, C is a Casimir for \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\Lambda ,\;\{ .,\;.\} _{\tilde \Lambda } $$
\end{document} is a reduced Poisson bracket and (A, ▵) is a bialgebra. We study the relation between a Lie-Poisson stucture Λ and a reduced Poisson bracket \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\{ ,\;\} _{\tilde \Lambda } $$
\end{document}, which is a key element in using the Lie algebra A to constructing this sequence. New examples of Lie algebras and their related integrable Hamiltonian systems are given.