On the total domination subdivision number in some classes of graphs

被引:0
作者
O. Favaron
H. Karami
R. Khoeilar
S. M. Sheikholeslami
机构
[1] Univ. Paris Sud and CNRS,LRI UMR 8623
[2] Azarbaijan University of Tarbiat Moallem,Department of Mathematics
来源
Journal of Combinatorial Optimization | 2010年 / 20卷
关键词
Total domination number; Total domination subdivision number;
D O I
暂无
中图分类号
学科分类号
摘要
A set S of vertices of a graph G=(V,E) without isolated vertex is a total dominating set if every vertex of V(G) is adjacent to some vertex in S. The total domination numberγt(G) is the minimum cardinality of a total dominating set of G. The total domination subdivision number\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm {sd}_{\gamma_{t}}(G)$\end{document} is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the total domination number. In this paper we prove that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm {sd}_{\gamma_{t}}(G)\leq\gamma_{t}(G)+1$\end{document} for some classes of graphs.
引用
收藏
页码:76 / 84
页数:8
相关论文
共 31 条
  • [1] Archdeacon D(2004)Some remarks on domination J Graph Theory 46 207-210
  • [2] Ellis-Monaghan J(2007)Total domination and total domination subdivision numbers of graphs Australas J Comb 38 229-235
  • [3] Fisher D(2008)Total domination and total domination subdivision number of a graph and its complement Discrete Math 308 4018-4023
  • [4] Froncek D(2003)Total domination subdivision numbers J Comb Math Comb Comput 44 115-128
  • [5] Lam PCB(2004)Total domination subdivision numbers of graphs Discuss Math Graph Theory 24 457-467
  • [6] Seager S(2004)Total domination subdivision numbers of trees Discrete Math 286 195-202
  • [7] Wei B(2008)On matching and total domination in graphs Discrete Math 308 2313-2318
  • [8] Yuster R(2008)Trees whose total domination subdivision number is one Bull Inst Comb Appl 53 57-67
  • [9] Favaron O(undefined)undefined undefined undefined undefined-undefined
  • [10] Karami H(undefined)undefined undefined undefined undefined-undefined