Schur Function Identities Arising From the Basic Representation of A2(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A^{(2)}_{2}}$$\end{document}

被引:0
作者
Hiroshi Mizukawa
Tatsuhiro Nakajima
Ryoji Seno
Hiro-Fumi Yamada
机构
[1] National Defense Academy of Japan,Department of Mathematics
[2] Meikai University,Faculty of Economics
[3] NEC System Technologies,Department of Mathematics
[4] Ltd.,undefined
[5] Okayama University,undefined
来源
Letters in Mathematical Physics | 2014年 / 104卷
关键词
Schur function; Schur’s ; -function; the basic representation of ; Boson–fermion correspondence; Primary 05E05; Secondary 22E65;
D O I
暂无
中图分类号
学科分类号
摘要
A Lie theoretic interpretation is given for some formulas of Schur functions and Schur Q-functions. Two realizations of the basic representation of the Lie algebra A2(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A^{(2)}_2}$$\end{document} are considered; one is on the fermionic Fock space and the other is on the bosonic polynomial space. Via the boson–fermion correspondence, simple relations of the vacuum expectation values of fermions turn out to be algebraic relations of Schur functions.
引用
收藏
页码:1317 / 1331
页数:14
相关论文
共 13 条
[1]  
Frenkel I.B.(1981)Two constructions of affine Lie algebra representations and boson–fermion correspondence in quantum field theory J. Funct. Anal. 44 259-327
[2]  
Ikeda T.(2008)Mixed expansion formula for the rectangular Schur functions and the affine Lie algebra Adv. Appl. Math. 40 514-535
[3]  
Mizukawa H.(1991)Vertex operators, symmetric functions, and the spin group Γ J. Alg. 138 340-398
[4]  
Nakajima T.(1998)Schur functions and affine lie algebras J. Alg. 210 103-144
[5]  
Yamada H.-F.(2005)Rectangular Schur functions and the basic representation of affine Lie algebras Discrete Math. 298 285-300
[6]  
Jing N.(2000)Schur’s Adv. Stud. Pure Math. 28 241-259
[7]  
Leclerc B.(1911)-functions and twisted affine Lie algebras J. Reine Angew. Math. 139 155-250
[8]  
Leidwanger S.(undefined)Über die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene linear Substitutionen undefined undefined undefined-undefined
[9]  
Mizukawa H.(undefined)undefined undefined undefined undefined-undefined
[10]  
Yamada H.-F.(undefined)undefined undefined undefined undefined-undefined