Strong Law of Large Numbers for Betti Numbers in the Thermodynamic Regime

被引:0
作者
Akshay Goel
Khanh Duy Trinh
Kenkichi Tsunoda
机构
[1] Kyushu University,Faculty of Mathematics
[2] Tohoku University,Research Alliance Center for Mathematical Sciences
[3] Osaka University,Department of Mathematics, Graduate School of Science
[4] Center for Advanced Intelligence Project,undefined
来源
Journal of Statistical Physics | 2019年 / 174卷
关键词
Betti numbers; Random geometric complexes; Thermodynamic regime; Strong law of large numbers; Manifolds; Primary 60D05; Secondary 60F15;
D O I
暂无
中图分类号
学科分类号
摘要
We establish the strong law of large numbers for Betti numbers of random Čech complexes built on RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^N$$\end{document}-valued binomial point processes and related Poisson point processes in the thermodynamic regime. Here we consider both the case where the underlying distribution of the point processes is absolutely continuous with respect to the Lebesgue measure on RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^N$$\end{document} and the case where it is supported on a C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document} compact manifold of dimension strictly less than N. The strong law is proved under very mild assumption which only requires that the common probability density function belongs to Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} spaces, for all 1≤p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le p < \infty $$\end{document}.
引用
收藏
页码:865 / 892
页数:27
相关论文
共 22 条
  • [1] Bobrowski O(2015)The topology of probability distributions on manifolds Probab. Theory Relat. Fields 161 651-686
  • [2] Mukherjee S(1948)On the imbedding of systems of compacta in simplicial complexes Fundam. Math. 35 217-234
  • [3] Borsuk K(2009)Topology and data Bull. Am. Math. Soc. (N.S.) 46 255-308
  • [4] Carlsson G(2008)Barcodes: the persistent topology of data Bull. Am. Math. Soc. (N.S.) 45 61-75
  • [5] Ghrist R(2018)Limit theorems for persistence diagrams Ann. Appl. Probab. 28 2740-2780
  • [6] Hiraoka Y(2011)Random geometric complexes Discret. Comput. Geom. 45 553-573
  • [7] Shirai T(2013)Limit theorems for Betti numbers of random simplicial complexes Homol. Homotopy Appl. 15 343-374
  • [8] Trinh KD(2007)Laws of large numbers in stochastic geometry with statistical applications Bernoulli 13 1124-1150
  • [9] Kahle M(2003)Weak laws of large numbers in geometric probability Ann. Appl. Probab. 13 277-303
  • [10] Kahle M(2013)Limit theory for point processes in manifolds Ann. Appl. Probab. 23 2161-2211