On the intersections of the Besicovitch sets and exceptional sets in the Erdős–Rényi limit theorem

被引:0
|
作者
J. Li
M. Wu
机构
[1] Guangzhou University,School of Mathematics and Information Science
[2] South China University of Technology,Department of Mathematics
来源
Acta Mathematica Hungarica | 2019年 / 158卷
关键词
Besicovitch set; run-length function; Erdős–Rényi limit theorem; Hausdorff dimension; 28A80; 11K55;
D O I
暂无
中图分类号
学科分类号
摘要
For x∈[0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x \in [0,1)}$$\end{document}, let Sn(x) denote the summation of the first n digits in the dyadic expansion of x and rn(x) denote the run-length function. Let H denote the set of monotonically increasing functions φ:N→(0,+∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varphi \colon \mathbb{N} \to (0, +\infty)}$$\end{document} with limn→∞φ(n)=+∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lim_{n\to\infty} \varphi(n)=+\infty}$$\end{document}. For any φ∈H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varphi \in H}$$\end{document} and 0≤α≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${0 \leq \alpha \leq 1}$$\end{document}, we prove that the set x∈[0,1]:limn→∞Sn(x)n=α,lim infn→∞rn(x)φ(n)=0,lim supn→∞rn(x)φ(n)=+∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{x\in [0,1]: \lim_{n\to \infty} \frac{S_n(x)}{n}=\alpha, \liminf_{n\to\infty} \frac{r_n(x)}{\varphi(n)}=0, \limsup _{n\to\infty} \frac{r_n(x)}{\varphi(n)}=+\infty\right\}$$\end{document}either has Hausdorff dimension H(α)/log2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H(\alpha)/{\rm log} 2}$$\end{document} or is empty. Here H(α)=-αlogα-(1-α)log(1-α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H(\alpha) = -{\alpha}{\rm log} \alpha-(1-\alpha){\rm log}(1-\alpha)}$$\end{document} is the classical entropy function.
引用
收藏
页码:132 / 144
页数:12
相关论文
共 26 条