Resolvent estimates for the linearized operator in Lp associated with motion of compressible viscous fluids

被引:0
|
作者
Ryôhei Kakizawa
机构
[1] The University of Tokyo,Graduate School of Mathematical Sciences
来源
Journal of Evolution Equations | 2012年 / 12卷
关键词
Primary 35Q30; Secondary 35P05; 76N10; Compressible viscous barotropic fluids; Navier boundary condition; Resolvent estimates;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the resolvent problem for the linearized system of equations that describe motion of compressible viscous barotropic fluids in a bounded domain with the Navier boundary condition. This problem has uniquely a solution in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{W}^{1}_{p} \times (W^{2}_{p})^{n}}$$\end{document} satisfying Lp estimates for any 1 < p < ∞. Moreover, resolvent estimates for the linearized operator of the above system in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{W}^{1}_{p} \times (L_{p})^{n}}$$\end{document} are established. Our main results yield clearly that the linearized operator is the infinitesimal generator of a uniformly bounded analytic semigroup on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{W}^{1}_{p} \times (L_{p})^{n}}$$\end{document}.
引用
收藏
页码:27 / 58
页数:31
相关论文
共 2 条