共 2 条
Resolvent estimates for the linearized operator in Lp associated with motion of compressible viscous fluids
被引:0
|作者:
Ryôhei Kakizawa
机构:
[1] The University of Tokyo,Graduate School of Mathematical Sciences
来源:
Journal of Evolution Equations
|
2012年
/
12卷
关键词:
Primary 35Q30;
Secondary 35P05;
76N10;
Compressible viscous barotropic fluids;
Navier boundary condition;
Resolvent estimates;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We consider the resolvent problem for the linearized system of equations that describe motion of compressible viscous barotropic fluids in a bounded domain with the Navier boundary condition. This problem has uniquely a solution in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\dot{W}^{1}_{p} \times (W^{2}_{p})^{n}}$$\end{document} satisfying Lp estimates for any 1 < p < ∞. Moreover, resolvent estimates for the linearized operator of the above system in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\dot{W}^{1}_{p} \times (L_{p})^{n}}$$\end{document} are established. Our main results yield clearly that the linearized operator is the infinitesimal generator of a uniformly bounded analytic semigroup on \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\dot{W}^{1}_{p} \times (L_{p})^{n}}$$\end{document}.
引用
收藏
页码:27 / 58
页数:31
相关论文