Hall chains in normal subgroups of finite p-groups

被引:0
|
作者
Yakov Berkovich
机构
[1] University of Haifa,Department of Mathematics
[2] Mount Carmel,undefined
来源
关键词
Normal Subgroup; Maximal Subgroup; Cyclic Subgroup; Maximal Class; Characteristic Subgroup;
D O I
暂无
中图分类号
学科分类号
摘要
Some suffcient conditions for existence of k-admissible Hall chains (= \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{H}_k $$\end{document}-chains) in normal subgroups of finite p-groups are established (for irregular p-groups we consider only the case k = p). In Propositions 13–15 we study p-groups without \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{H}_p $$\end{document}-chains, and metacyclic 2-groups with the above property are classified. Abelian p-groups with exactly one \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{H}_k $$\end{document}-chain are characterized in Proposition 12.
引用
收藏
页码:29 / 51
页数:22
相关论文
共 50 条