Characterizations of Centrality in C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{C}}^*$$\end{document}-algebras via Local Monotonicity and Local Additivity of Functions

被引:0
作者
Gergő Nagy
机构
[1] University of Debrecen,Institute of Mathematics
关键词
-algebras; Centrality; Continuous function calculus; Monotonicity; Additivity; Primary 46L05;
D O I
10.1007/s00020-019-2526-2
中图分类号
学科分类号
摘要
In this paper, we give two characterizations of central elements in a C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-algebra A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}$$\end{document} in terms of local properties of maps on A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}$$\end{document} given by the function calculus. We prove that for a strictly convex increasing function f defined on an open interval which is unbounded from above, an element a∈A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a\in \mathcal {A}$$\end{document} is central if and only if f is locally monotone at a. That result significantly improves similar theorems by Ogasawara, Pedersen, Wu, Molnár and Virosztek. An analogous statement on local additivity is also presented.
引用
收藏
相关论文
共 9 条
[1]  
Ji G(2003)On characterizations of commutativity of Proc. Am. Math. Soc. 131 3845-3849
[2]  
Tomiyama J(2017)-algebras Bull. Aust. Math. Soc. 95 138-143
[3]  
Molnár L(1955)A characterization of central elements in J. Sci. Hiroshima Univ. Ser. A 18 307-309
[4]  
Ogasawara T(2010)-algebras Proc. Eston. Acad. Sci. 59 48-52
[5]  
Silvestrov S(2017)A theorem on operator algebras J. Math. Anal. Appl. 453 221-226
[6]  
Osaka H(2001)Operator convex functions over Proc. Am. Math. Soc. 129 983-987
[7]  
Tomiyama J(undefined)-algebras undefined undefined undefined-undefined
[8]  
Virosztek D(undefined)Connections between centrality and local monotonicity of certain functions on undefined undefined undefined-undefined
[9]  
Wu W(undefined)-algebras undefined undefined undefined-undefined