Some properties of the Yamabe soliton and the related nonlinear elliptic equation

被引:0
|
作者
S. Y. Hsu
机构
[1] National Chung Cheng University,Department of Mathematics
关键词
Primary 35J70; 35A01 Secondary 35B40; 58J37; 58J05;
D O I
暂无
中图分类号
学科分类号
摘要
Firstly we prove the non-existence of positive radially symmetric solution of the nonlinear elliptic equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{n-1}{m}\Delta v^m+\alpha v+\beta x\cdot \nabla u=0$$\end{document} in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{R }^{n}$$\end{document} when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 3$$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<m\le \frac{n-2}{n}$$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha <0$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta \le 0$$\end{document} and prove various properties of the solution of the above elliptic equation for other parameter range of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}. Then these results are applied to prove some results on Yamabe solitons including the exact behaviour of the metric of the Yamabe soliton, its scalar curvature and sectional curvature, at infinity. A new proof of a result of Daskalopoulos and Sesum (The classification of locally conformally flat Yamabe solitons, http://arxiv.org/abs/1104.2242) on the positivity of the sectional curvature of Yamabe solitons is also presented.
引用
收藏
页码:307 / 321
页数:14
相关论文
共 50 条
  • [41] Numerical solution of mixed boundary value problem for some nonlinear elliptic equation
    Bayrak, A
    APPLIED MATHEMATICS AND COMPUTATION, 2005, 166 (01) : 204 - 212
  • [42] Some soliton-type analytical solutions and numerical simulation of nonlinear Schrodinger equation
    Yadav, Om Prakash
    Jiwari, Ram
    NONLINEAR DYNAMICS, 2019, 95 (04) : 2825 - 2836
  • [43] Some optical soliton solutions to the perturbed nonlinear Schrodinger equation by modified Khater method
    Khater, Mostafa M. A.
    Anwar, Sadia
    Tariq, Kalim U.
    Mohamed, Mohamed S.
    AIP ADVANCES, 2021, 11 (02)
  • [45] Some optical soliton solutions with bifurcation analysis of the paraxial nonlinear Schrödinger equation
    S. M. Rayhanul Islam
    S. M. Yaisir Arafat
    Hammad Alotaibi
    Mustafa Inc
    Optical and Quantum Electronics, 2024, 56
  • [46] Some fourth order nonlinear elliptic problems related to epitaxial growth
    Escudero, Carlos
    Peral, Ireneo
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (06) : 2515 - 2531
  • [47] Some new type optical and the other soliton solutions of coupled nonlinear Hirota equation
    Nisar, Kottakkaran Sooppy
    Inan, Ibrahim E.
    Yepez-Martinez, H.
    Inc, Mustafa
    RESULTS IN PHYSICS, 2022, 35
  • [48] Some optical soliton solution with bifurcation analysis of the paraxial nonlinear Schrödinger equation
    Islam, S. M. Rayhanul
    Arafat, S. M. Yaisir
    Alotaibi, Hammad
    Inc, Mustafa
    OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (03)
  • [49] Novel dispersive soliton solutions to a fractional nonlinear Schrodinger equation related with ultrashort pulses
    Ay, Nursena Gunhan
    Yasar, Emrullah
    PRAMANA-JOURNAL OF PHYSICS, 2023, 97 (03):
  • [50] On some nonlinear elliptic systems
    Djellit, A
    Tas, S
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 59 (05) : 695 - 706