Some properties of the Yamabe soliton and the related nonlinear elliptic equation

被引:0
|
作者
S. Y. Hsu
机构
[1] National Chung Cheng University,Department of Mathematics
关键词
Primary 35J70; 35A01 Secondary 35B40; 58J37; 58J05;
D O I
暂无
中图分类号
学科分类号
摘要
Firstly we prove the non-existence of positive radially symmetric solution of the nonlinear elliptic equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{n-1}{m}\Delta v^m+\alpha v+\beta x\cdot \nabla u=0$$\end{document} in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{R }^{n}$$\end{document} when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 3$$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<m\le \frac{n-2}{n}$$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha <0$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta \le 0$$\end{document} and prove various properties of the solution of the above elliptic equation for other parameter range of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}. Then these results are applied to prove some results on Yamabe solitons including the exact behaviour of the metric of the Yamabe soliton, its scalar curvature and sectional curvature, at infinity. A new proof of a result of Daskalopoulos and Sesum (The classification of locally conformally flat Yamabe solitons, http://arxiv.org/abs/1104.2242) on the positivity of the sectional curvature of Yamabe solitons is also presented.
引用
收藏
页码:307 / 321
页数:14
相关论文
共 50 条
  • [21] ON AN ELLIPTIC EQUATION RELATED TO THE BLOW-UP PHENOMENON IN THE NONLINEAR SCHRODINGER-EQUATION
    JOHNSON, R
    PAN, XB
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1993, 123 : 763 - 782
  • [22] Existence and properties of bubbling solutions for a critical nonlinear elliptic equation
    Chunhua Wang
    Qingfang Wang
    Jing Yang
    Journal of Fixed Point Theory and Applications, 2023, 25
  • [23] Existence and properties of bubbling solutions for a critical nonlinear elliptic equation
    Wang, Chunhua
    Wang, Qingfang
    Yang, Jing
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2023, 25 (02)
  • [24] Dark Soliton Properties of Nonlinear Schrodinger Equation with (2n
    Zhou Yu
    Zhang Yuan
    Wang Ying
    Zhao Minglin
    Yan Donguang
    ACTA OPTICA SINICA, 2020, 40 (09)
  • [25] Lienard equation and exact solutions for some soliton-producing nonlinear equations
    Zhang, WG
    Chang, QS
    Zhang, QR
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2004, 41 (06) : 849 - 858
  • [26] Some mixed trigonometric complex soliton solutions to the perturbed nonlinear Schrodinger equation
    Gao, Wei
    Ghanbari, Behzad
    Gunerhan, Hatira
    Baskonus, Haci Mehmet
    MODERN PHYSICS LETTERS B, 2020, 34 (03):
  • [27] On a singular nonlinear elliptic equation
    Chen, Hongwei
    Nonlinear Analysis, Theory, Methods and Applications, 1997, 29 (03): : 337 - 345
  • [28] Lienard Equation and Exact Solutions for Some Soliton-Producing Nonlinear Equations
    ZHANG Wei-Guo~1 CHANG Qian-Shun~2 ZHANG Qi-Ren~1~1Department of Basic Sciences
    Communications in Theoretical Physics, 2004, 41 (06) : 849 - 858
  • [29] On a singular nonlinear elliptic equation
    Chen, HW
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 29 (03) : 337 - 345
  • [30] NOTE ON A NONLINEAR ELLIPTIC EQUATION
    RABINOWITZ, PH
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1972, 22 (01) : 43 - +