Identifying the components of the solid–electrolyte interphase in Li-ion batteries

被引:0
|
作者
Luning Wang
Anjali Menakath
Fudong Han
Yi Wang
Peter Y. Zavalij
Karen J. Gaskell
Oleg Borodin
Dinu Iuga
Steven P. Brown
Chunsheng Wang
Kang Xu
Bryan W. Eichhorn
机构
[1] University of Maryland,Department of Chemistry and Biochemistry
[2] University of Warwick,Department of Physics
[3] University of Maryland,Department of Chemical and Biomolecular Engineering
[4] Electrochemistry Branch,undefined
[5] Power and Energy Division Sensor and Electron Devices Directorate,undefined
[6] US Army Research Laboratory,undefined
来源
Nature Chemistry | 2019年 / 11卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The importance of the solid–electrolyte interphase (SEI) for reversible operation of Li-ion batteries has been well established, but the understanding of its chemistry remains incomplete. The current consensus on the identity of the major organic SEI component is that it consists of lithium ethylene di-carbonate (LEDC), which is thought to have high Li-ion conductivity, but low electronic conductivity (to protect the Li/C electrode). Here, we report on the synthesis and structural and spectroscopic characterizations of authentic LEDC and lithium ethylene mono-carbonate (LEMC). Direct comparisons of the SEI grown on graphite anodes suggest that LEMC, instead of LEDC, is likely to be the major SEI component. Single-crystal X-ray diffraction studies on LEMC and lithium methyl carbonate (LMC) reveal unusual layered structures and Li+ coordination environments. LEMC has Li+ conductivities of >1 × 10−6 S cm−1, while LEDC is almost an ionic insulator. The complex interconversions and equilibria of LMC, LEMC and LEDC in dimethyl sulfoxide solutions are also investigated.
引用
收藏
页码:789 / 796
页数:7
相关论文
共 50 条
  • [1] Identifying the components of the solid-electrolyte interphase in Li-ion batteries
    Wang, Luning
    Menakath, Anjali
    Han, Fudong
    Wang, Yi
    Zavalij, Peter Y.
    Gaskell, Karen J.
    Borodino, Oleg
    Iuga, Dinu
    Brown, Steven P.
    Wang, Chunsheng
    Xu, Kang
    Eichhorn, Bryan W.
    NATURE CHEMISTRY, 2019, 11 (09) : 789 - 796
  • [2] A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries
    Verma, Pallavi
    Maire, Pascal
    Novak, Petr
    ELECTROCHIMICA ACTA, 2010, 55 (22) : 6332 - 6341
  • [3] Effect of water on solid electrolyte interphase formation in Li-ion batteries
    Saito, M.
    Fujita, M.
    Aoki, Y.
    Yoshikawa, M.
    Yasuda, K.
    Ishigami, R.
    Nakata, Y.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2016, 371 : 273 - 277
  • [4] Nucleation and Growth Mode of Solid Electrolyte Interphase in Li-Ion Batteries
    Yao, Yu-Xing
    Wan, Jing
    Liang, Ning-Yan
    Yan, Chong
    Wen, Rui
    Zhang, Qiang
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (14) : 8001 - 8006
  • [5] A new look at the solid electrolyte interphase on graphite anodes in Li-ion batteries
    Edström, K
    Herstedt, M
    Abraham, DP
    JOURNAL OF POWER SOURCES, 2006, 153 (02) : 380 - 384
  • [6] Diphenyloctyl phosphate as a solid electrolyte interphase forming additive for Li-ion batteries
    Park, In-Jun
    Nam, Tae-Heum
    Kim, Jung-Gu
    JOURNAL OF POWER SOURCES, 2013, 244 : 122 - 128
  • [7] Combined AFM/SECM Investigation of the Solid Electrolyte Interphase in Li-Ion Batteries
    Zampardi, Giorgia
    Klink, Stefan
    Kuznetsov, Volodymyr
    Erichsen, Thomas
    Maljusch, Artjom
    La Mantia, Fabio
    Schuhmann, Wolfgang
    Ventosa, Edgar
    CHEMELECTROCHEM, 2015, 2 (10): : 1607 - 1611
  • [8] In situ neutron reflectometry measurements of the solid electrolyte interphase in Li-ion batteries
    Dura, Joseph A.
    Owejan, Jeanette E.
    DeCaluwe, Steven C.
    Owejan, Jon P.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [9] Is the Solid Electrolyte Interphase an Extra-Charge Reservoir in Li-Ion Batteries?
    Rezvani, S. Javad
    Gunnella, Roberto
    Witkowska, Agnieszka
    Mueller, Franziska
    Pasqualini, Marta
    Nobili, Francesco
    Passerini, Stefano
    Di Cicco, Andrea
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (05) : 4570 - 4576
  • [10] Stabilization effect of solid-electrolyte interphase by electrolyte engineering for advanced Li-ion batteries
    Bintang, His Muhammad
    Seongsoo, Lee
    Shin, Sunghee
    Kim, Byung Gon
    Jung, Hun-Gi
    Whang, Dongmok
    Lim, Hee-Dae
    CHEMICAL ENGINEERING JOURNAL, 2021, 424