Optical Aharonov-Bohm Effect: An Inverse Hyperbolic Problems Approach

被引:0
作者
G. Eskin
机构
[1] UCLA,Department of Mathematics
来源
Communications in Mathematical Physics | 2008年 / 284卷
关键词
Inverse Problem; Electromagnetic Potential; Inverse Boundary; Inverse Scatter Problem; Density Lemma;
D O I
暂无
中图分类号
学科分类号
摘要
We describe the general setting for the optical Aharonov-Bohm effect based on the inverse problem of the identification of the coefficients of the governing hyperbolic equation by the boundary measurements. We interpret the inverse problem result as a possibility in principle to detect the optical Aharonov-Bohm effect by the boundary measurements.
引用
收藏
页码:317 / 343
页数:26
相关论文
共 55 条
[11]  
Millouni P.(1923)Equivalence of time-domain inverse problems and boundary spectral problems Ann. Phys. (Leipzig) 72 421-1112
[12]  
Eskin G.(2004)General relativity in Electrical Engineering IMA Volumes 137 183-5237
[13]  
Eskin G.(2000)Determining anisotropic real-analytic conducivity by boundary measurements AMS/1P Stud. Adv. Math 16 259-88
[14]  
Eskin G.(2004)An inverse scattering problem with the Aharonov-Bohm effect Inverse Problems 20 419-1603
[15]  
Eskin G.(2006)Global identifiability for inverse problem for the Schrödinger equation in a magnetic field New J. Phys. 8 247-436
[16]  
Eskin G.(1999)Inverse scattering for the Laplace-Beltrami operators with complex-valued electromagnetic potentials and embedded obstacles Phys. Rev. A60 4301-1969
[17]  
Eskin G.(2000)The quantum effects of electromagnetic fluxes Phys. Rev. Lett. 84 822-1056
[18]  
Ralston J.(1989)Surface Wave Scattering by a Vertical Vortex and the Symmetry of the Aharonov-Bohm Wave Function Comm. Pure Appl. Math. 42 1097-undefined
[19]  
Gordon W.(2000)The Aharonov-Bohm effect and time-dependent inverse scattering theory J. Math. Phys. 41 5223-undefined
[20]  
Katchalov A.(1995)undefined Math. Ann. 303 377-undefined