A matrix model for hypergeometric Hurwitz numbers

被引:0
作者
J. Ambjørn
L. O. Chekhov
机构
[1] Copenhagen University,Niels Bohr Institute
[2] Radboud University,IMAPP
[3] RAS,Steklov Mathematical Institute
[4] Independent University of Moscow,Laboratoire Poncelet
[5] Århus University,Center for Quantum Geometry of Moduli Spaces
来源
Theoretical and Mathematical Physics | 2014年 / 181卷
关键词
Hurwitz number; random complex matrix; Kadomtsev-Petviashvili hierarchy; matrix chain; bipartite graph; spectral curve;
D O I
暂无
中图分类号
学科分类号
摘要
We present multimatrix models that are generating functions for the numbers of branched covers of the complex projective line ramified over n fixed points zi, i = 1, ..., n (generalized Grothendieck’s dessins d’enfants) of fixed genus, degree, and ramification profiles at two points z1 and zn. We sum over all possible ramifications at the other n-2 points with a fixed length of the profile at z2 and with a fixed total length of profiles at the remaining n-3 points. All these models belong to a class of hypergeometric Hurwitz models and are therefore tau functions of the Kadomtsev-Petviashvili hierarchy. In this case, we can represent the obtained model as a chain of matrices with a (nonstandard) nearest-neighbor interaction of the type tr MiMi+1−1. We describe the technique for evaluating spectral curves of such models, which opens the way for obtaining 1/N2-expansions of these models using the topological recursion method. These spectral curves turn out to be algebraic.
引用
收藏
页码:1486 / 1498
页数:12
相关论文
共 56 条
[1]  
Kharchev S(1995)undefined Internat. J. Mod. Phys. A 10 2015-2051
[2]  
Marshakov A(2012)undefined J. Phys. A: Math. Theor. 45 045209-560
[3]  
Mironov A(2006)undefined Ann. Math. (2) 163 517-926
[4]  
Morozov A(2001)undefined Theor. Math. Phys. 128 906-206
[5]  
Alexandrov A(2006)undefined Theor. Math. Phys. 146 183-951
[6]  
Mironov A(2008)undefined Adv. Math. 219 932-361
[7]  
Morozov A(2014)undefined Ann. Inst. Henri Poincaré D 1 337-1236
[8]  
Natanzon S(1992)undefined Modern Phys. Lett. A 7 1223-314
[9]  
Okounkov A(1992)undefined Phys. Lett. B 275 311-256
[10]  
Pandharipande R(1980)undefined Math. USSR-Izv. 14 247-3202